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A recent paper by Reinhard Selten and Thorsten Chmura (2008)—henceforth, 
SC—reports laboratory results for 12 different 2 × 2 games with a unique mixed-
strategy equilibrium. These binary-choice games are relatively simple and provide 
a natural testbed for alternative models that aim to predict long-run, or stationary, 
outcomes of play. SC consider five such models: Nash equilibrium, quantal response 
equilibrium, action-sampling equilibrium, payoff-sampling equilibrium, and impulse 
balance equilibrium.

Nash equilibrium subsumes two different restrictions: that players have correct 
beliefs about others’ play and that players best respond to those beliefs. Quantal 
response equilibrium (QRE) replaces the requirement of best responses with “better 
responses,” i.e., players are more likely to choose the option with the higher expected 
payoff, but they do not necessarily choose the best option all the time. QRE does 
assume that players’ beliefs are correct on average; i.e., beliefs are not systemati-
cally biased. Action sampling equilibrium describes the long-run outcome when 
players best respond to a finite sample of their opponent’s previous actions.1 Payoff 
sampling equilibrium describes the long-run outcome when players form two finite 
samples of their past payoffs, one for each option, and select the one with the high-
est total payoff. Finally, impulse balance equilibrium is based on the idea that play-
ers take into account forgone payoffs. If the option not chosen would have yielded 
higher payoffs, then there is an “impulse” to change (and, importantly, “losses” of 
forgone payoff are weighted twice as heavily as gains). Impulse balance equilibrium 
corresponds to the long-run outcome where, for both players, expected impulses are 
equal across the two options.

SC (2008, p. 962) conclude that Nash and QRE fit worse than the other three 
concepts. They write:

1 SC ( 2008, p. 939) write “ The concept has been developed by one of the authors (Selten). As far as we know, 
it cannot be found in the literature.’’ However, Goeree and Charles A. Holt (2002) introduced the concept of “sto-
chastic learning equilibrium,’’ which describes the long-run outcome when players better respond to a weighted 
sample of their opponent’s previous actions. In other words, the models are similar because one uses a finite sample 
(bounded memory) and another uses a discounted sample (fading memory), though neither model is nested within 
the other, and stochastic learning equilibrium allows for both best and better responses. The stochastic learning 
equilibrium is also clearly a stationary concept, not a model of learning, intended to describe long-run outcomes.
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“It is remarkable that the newer concepts of impulse balance equilibrium, payoff 
sampling equilibrium, and action-sampling equilibrium clearly outperform the more 
established concepts of quantal response equilibrium [ QRE ] and Nash equilibrium. 
All the relevant comparisons are highly significant. This is perhaps the most important 
result of the statistical tests.”

The first point of this comment is that the model fits for two of the five concepts—
QRE and action-sampling—are incorrect for all 12 games.2 We report the correct 
results for these two models (and some other small corrections). The corrected fits 
for QRE are close to the other three non-Nash concepts, which weakens the most 
novel part of their original conclusion, i.e., “all the relevant comparisons are highly 
significant,” and implies a weaker conclusion: the sampling theories do better in 
some (but not all) comparisons, and QRE does not fit worse (or better) than impulse 
balance equilibrium.3

Fit measures and statistical tests show that the four non-Nash models are about 
equally accurate. SC (2008, p. 965) note this fact (but for three models, not all four) 
and suggest a research direction as follows:

“It is not easy to understand why the predictions of the three newer concepts are not 
very far apart, in spite of the fact that they are based on very different principles. This 
is perhaps peculiar to our sample. It would be desirable to devise experiments that 
permit a better discrimination among the three concepts (emphasis ours).”

The second point of the comment is to extend the scope of their comparative analy-
sis, by showing how two different games reported several years ago do “permit a 
better discrimination” among some of the concepts. The first game was explicitly 
designed to show that no quantal response equilibrium (logit or otherwise) could 
explain observed behavior (see Game 4 and Proposition 1 in Goeree, Holt, and 
Thomas R. Palfrey 2003). Applying impulse balance equilibrium to this game works 
like “magic”: it explains observed behavior almost perfectly. So this game is capable 
of differentiating between two of the concepts—impulse balance equilibrium and 
risk-neutral QRE—that fit equally well in SC’s data.4

The results also highlight one of the crucial assumptions underlying impulse 
balance equilibrium: impulses are defined relative to a security level (the max-
min payoff), and it is assumed that losses with respect to this security level are 
weighed twice as much as gains. While impulse balance equilibrium is ostensibly a 
parameter-free concept (since the loss aversion coefficient is fixed to 2), this addi-
tional assumption about players’ different reactions to forgone losses and gains is 
not innocuous. For the game designed by Goeree, Holt, and Palfrey (2003), it is the 
assumption of loss aversion that makes impulse balance equilibrium predict well.5 

2 A referee also asked us to correct a typo on page 945 of the SC paper in paragraph 4; “row R” should be 
“column R.”

3 It is true that with the corrected analysis, Nash predictions do fit worse than the other four concepts. However, 
the ability of other models to explain deviations from Nash play has been shown in hundreds of previous experi-
ments; see Camerer (2003) for a book-length summary. This part of their conclusion is solid but is only original in 
its emphasis on the sampling and impulse balance models.

4 Indeed, impulse balance equilibrium (with loss aversion) outperforms all other stationary concepts (without 
loss aversion). Once the other stationary concepts are augmented with loss aversion, they perform better than 
impulse balance equilibrium (see Figure 6 below).

5 Following Axel Ockenfels and Reinhard Selten (2005), we estimated a one-parameter extension of impulse 
balance equilibrium where the weight for gains is fixed to be 1, but the weight for losses is a free parameter, γ. The 
estimations yield γ = 2.07 and the improvement in log-likelihood when γ is fixed at 2 is only 0.6 percent. In other 
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As we show below, if the other concepts are augmented with loss aversion they pre-
dict behavior quite well (and even better than impulse balance equilibrium).

The second class of games that discriminate among concepts are asymmetric 
2 × 2 matching pennies games (e.g., Jack Ochs 1995). We report new analyses 
using the data of Richard D. McKelvey, Palfrey, and Roberto A. Weber (2000). In 
these games, loss aversion plays no role since security levels are zero and payoffs 
are positive. We find that impulse balance equilibrium fits the same as QRE and 
somewhat worse than action-sampling and payoff-sampling. These two re-analyses 
of older data take up the search for games that discriminate better among stationary 
concepts that SC called for, and show that the loss-aversion built into impulse bal-
ance equilibrium accounts for some of that concept’s success.

I.  Reexamining the SC Results

Table 1 shows data averages and model predictions for each of the 12 games. 
This table and all subsequent tables and figures report corrections of their results in 

words, the degree of loss aversion (γ = 2) that is hardwired into the impulse balance equilibrium concept is nearly 
optimal for the dataset considered.

Table 1—Five Stationary Concepts Together with the Observed Relative Frequencies  
for Each of the Experimental Games

Nash
QRE 

(λ = 1.05)

Action-
sampling 
(n = 12)

Payoff-
sampling
(n = 6)

Impulse 
balance

Observed 
average of 

12 observations

Game 1 U 0.091 0.042 0.090 0.071 0.068 0.079
L 0.909 0.637 0.705 0.643 0.580 0.690

Game 2 U 0.182 0.154 0.193 0.185 0.172 0.217
L 0.727 0.579 0.584 0.569 0.491 0.527

Game 3 U 0.273 0.168 0.208 0.152 0.161 0.163
L 0.909 0.770 0.774 0.771 0.765 0.793

Game 4 U 0.364 0.275 0.302 0.285 0.259 0.286
L 0.818 0.734 0.719 0.726 0.710 0.736

Game 5 U 0.364 0.307 0.329 0.307 0.297 0.327
L 0.727 0.657 0.643 0.654 0.628 0.664

Game 6 U 0.455 0.417 0.426 0.427 0.400 0.445
L 0.636 0.607 0.596 0.597 0.600 0.596

Nash
QRE

(λ = 1.05)

Action-
sampling 
(n = 12)

Payoff-
sampling 
(n = 6)

Impulse 
balance

Observed 
average of 

6 observations

Game 7 U 0.091 0.042 0.090 0.060 0.104 0.141
L 0.909 0.637 0.705 0.691 0.634 0.564

Game 8 U 0.182 0.154 0.193 0.222 0.258 0.250
L 0.727 0.579 0.584 0.602 0.561 0.587

Game 9 U 0.273 0.168 0.208 0.154 0.188 0.254
L 0.909 0.770 0.774 0.767 0.764 0.827

Game 10 U 0.364 0.275 0.302 0.308 0.304 0.366
L 0.818 0.734 0.719 0.730 0.724 0.700

Game 11 U 0.364 0.307 0.329 0.338 0.354 0.331
L 0.727 0.657 0.643 0.650 0.646 0.652

Game 12 U 0.455 0.417 0.426 0.404 0.466 0.439
L 0.636 0.607 0.596 0.599 0.604 0.604

Note: γ = is the logit precision parameter, n the optimal sampling size for action or payoff sampling.



1032 THE AMERICAN ECONOMIC REVIEW ApRIl 2011

a visual form identical to their originals. The bold numbers indicate discrepancies 
between our results and those of SC. In particular, we find:

 (i) a different impulse balance prediction for Game 1,

 (ii) a different data average for Game 3,

 (iii) a different optimal sample size (n = 12) and, hence, different predictions for 
action-sampling equilibrium (see Figure 1 for the mean-squared distances by 
sample size), and

 (iv) vastly different predictions for the QRE model: the precision parameter we 
estimate using the mean-squared distance objective function is λ = 1.05, 
much lower than the estimate reported by SC (λ = 8.84).6

At this lower value of λ, the QRE predictions (Table 1) are much different from 
Nash predictions and much closer to the data. The improved fit is illustrated by 
Figure 2, which shows data averages and model predictions and parallels Figure 8 
in SC. Using an “ocular metric” suggests the predictions of the alternative models 
are remarkably close to each other and to the data averages. To quantify this we 
also computed the sample variance and theory-specific variance as in SC, which are 
shown in Figure 3 (cf. Figure 12 in SC).

SC (2008) evaluate the stationary concepts using data from the first 100 peri-
ods and final 100 periods (as in their Figure 13). Our correction to their Figure 
13 is Figure 4, which displays theory-specific variances for the different concepts 
(excluding Nash) by the first and last blocks of 100 periods and for all 200 periods 

6 Using maximum-likelihood techniques yields an estimate λ = 0.99.
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Figure 1. Overall Mean Squared Distances for the Action-Sampling Equilibria 
with Different Sample Sizes (cf. SC 2008, Figure 9)
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(correcting their Figure 12). It is notable that all models fit substantially better in 
the last block than in the first block, as one would hope for reasonable concepts of 
stationary behavior (which are not necessarily designed to explain early behavior). 
It is also the case that impulse balance equilibrium is the best model in the first 
block of 100 periods, the worst in the second block of 100 periods, and is best using 

Figure 3. Overall Mean Squared Distances of the Five Stationary Concepts  
Compared to the Observed Average (cf. SC 2008, Figure 12)

Figure 2. Visualization of the Theoretical Equilibria and the  
Observed Average in the Constant Sum Games (cf. SC 2008, Figure 8)
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all  periods.7 It is an interesting question how model accuracy in early, late, and all 
periods should be used to judge how well a stationary concept explains behavior.

To test for significant differences, SC report ten pairwise comparisons of the five 
different models based on the matched-pairs signed-rank test. Each model generates 
a squared deviation (between observed and predicted frequencies) for each of the 
108 sessions, and the Wilcoxon test is applied to the differences in these squared 
deviations across models. Table 2 is an updated version correcting SC’s pairwise 
model comparisons (compare with their Table 3). The top-to-bottom order of the 
models is the same as in their original table. The entries display rounded p-values for 
two-tailed Wilcoxon matched-pairs signed-rank tests for pairs of models, reported 
separately for constant-sum games, non–constant sum games, and for all games 
(exactly as in their Table 3).8 Combined, the various statistical tests confirm the “no 
difference” result suggested by Figure 2—there is no clear ranking among the four 
non-Nash models that holds across all games. The no difference result is all the more 
remarkable as the tests are based on 108 matched-pair observations. As expected the 
non-Nash models all do much better than Nash, and it is perhaps notable that action 
sampling and payoff sampling do better than QRE when all games are combined.

In their reply to this comment, Selten, Chmura, and Sebastian J. Goerg (2011)—
henceforth, SCG—now suggest implicitly that the Wilcoxon test they used earlier is 
problematic because of the assumption of symmetry around the median (although 
the assumption seems to be satisfied empirically 9). SCG (2011) now propose using 
the Fisher-Pitman test, which is newly reported in their reply. The only difference 

7 This conclusion is different from what is concluded from SC (2008)’s Figure 13, because of the corrections to 
both QRE and action sampling, which improve their fit especially in the last block of 100 periods.

8 Note that impulse-balance equilibrium does significantly better than payoff sampling and logit-QRE for the 
non–constant sum games, but it does significantly worse for the constant-sum games and worse overall.

9 Ronald H. Randles et al. (1980) develop a test for whether data are symmetrically distributed around an 
unknown median. We applied their test to the matched pairs of squared deviations across all possible theory pairs, 
and none of the resulting p-values were at all close to significant (ranging from 0.32 to 0.89). So the assumption 
of symmetry is reasonable and adds an additional empirical justification to SC’s initial use of the Wilcoxon test.

Figure 4. Theory Specific Squared Distances of the Five Stationary Concepts Compared  
to the Observed Average By Blocks of 100 Periods (cf. SC Figure 13)
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in the corrected Wilcoxon (W) results and the newly reported Fisher-Pitman (F-P) 
results across all games is that action-sampling equilibrium is now only weakly 
more accurate than QRE at p < 0.1 (F-P) rather than at p < 0.02 (W). In subsets 
of games, there are some minor differences in the p-values at which differences are 
significant (p-values generally are higher so results are weaker using the F-P test). 
QRE is significantly more accurate than impulse balance in the constant-sum game 
subset (at p < 0.001 using Wilcoxon), but using the F-P test, this result is erased, 
and impulse balance is also then more accurate than QRE in the non–constant sum 
game subset (at p < 0.01).

To summarize, neither the Wilcoxon test originally applied by SC nor the weaker 
Fisher-Pitman test differentiate very sharply among the stationary concepts. As 
noted in the Introduction, an extension to games which do differentiate well across 
concepts is therefore of interest in addressing the central point of the SC paper, 
which is the comparison of stationary models.

II.  Differentiating Stationary Concepts in Other Datasets

Goeree, Holt, and Palfrey (2003) designed the game in the left panel of Figure 5 
to illustrate the limitations of QRE in terms of explaining behavior when other fac-
tors, such as risk aversion, are likely to play a role. In particular, both players have 
a “safe” choice that rewards either 160 or 200 and a “risky” choice that rewards 
either 10 or 370. Goeree, Holt, and Palfrey (2003) prove that in any quantal response 
equilibrium (logit or otherwise), the column player’s probability of playing Right 
is greater than 0.5. Risk aversion, however, will naturally steer players towards the 
safer option of playing Left.

In the experiment, the aggregate choice frequencies were 65 percent for Left 
and 47 percent for Up, which contradicts risk-neutral QRE predictions. To com-
pute the impulse balance equilibrium of the game, note that the max-min payoff 
is 160 for both players. Subtracting 160 from all payoffs and multiplying by 2 if 

Table 2—p-Values in Favor of Row Concepts, Two-Tailed Matched-Pairs 
Wilcoxon Signed-Rank Test, n = 108 (rounded to the next higher level among 0.1 percent, 

0.2 percent, 0.5 percent, 1 percent, 2 percent, 5 percent, and 10 percent)

Impulse 
balance 

equilibrium

Payoff-
sampling 

equilibrium

Action-
sampling 

equilibrium

Quantal 
response 

equilibrium
Nash 

equilibrium

Impulse balance equilibrium 0.1 percent
0.1 percent

5 percent 0.5 percent 0.1 percent
Payoff-sampling equilibrium n.s. 5 percent 0.1 percent

0.1 percent 0.1 percent 0.1 percent
n.s. 0.1 percent

Action-sampling equilibrium n.s. n.s. 2 percent 0.1 percent
5 percent n.s. 10 percent 0.1 percent

n.s n.s. 10 percent 0.1 percent
Quantal response equilibrium n.s 0.1 percent

0.1 percent 0.1 percent
1 percent

Notes: Above: all 108 experiments are in bold; middle: 72 constant-sum game experiments; below: 36 non–con-
stant sum game experiments
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the resulting number is negative yields the transformed game in the right panel of 
Figure 5. The condition that, for both players, the expected impulses even out yields: 
150  p  D   q R  = 85  p u   q l  and 150  p u   q R  = 85  p D   q l  , which implies that  p u  = 1/2 and  
q l  = 30/47 ≈ 0.64. Impulse balance equilibrium fits almost perfectly!

Keep in mind that in impulse balance equilibrium the response to perceived 
losses (relative to the max-min reference point) is twice as large as the response to 
gains. The authors are very clear that this asymmetry is a fixed feature of the theory, 
although in principle it could be treated as a free parameter (as, e.g., Ockenfels and 
Selten 2005 did). Indeed, if losses and gains were weighed equally, the relevant con-
ditions would be: 150  p D   q R  = 170  p u   q l , and 150  p u   q R  = 170  p D   q l  , which implies 
that  p u  = 1/2 and  q l  = 15/32 ≈ 0.47. In other words, without the crucial loss aver-
sion feature, the impulse balance equilibrium predictions are on the wrong side of 
0.5 just like the risk-neutral QRE predictions reported by Goeree, Holt, and Palfrey 
(2003). The rightmost bars in Figure 6 show the theory-specific mean-squared devi-
ations for impulse balance, with and without loss aversion. The other pairs of bars 
display the analogous results for Nash and non-Nash models—the latter do better 
than impulse balance equilibrium once they are also augmented with loss aversion 
(weighing losses twice as much as gains).10 Clearly, it is the loss aversion assump-
tion that drives the goodness of fit for this game across all theories. It is true that only 
impulse balance equilibrium has loss aversion hardwired into it (Reinhard Selten, 
Klaus Abbink, and Ricarda Cox 2005), but Figure 6 shows that adding loss aversion 
to the other theories (using the fixed value of two for the loss aversion parameter) 
improves fit dramatically.

A. Asymmetric Matching pennies Games

A second test of the stationary concepts is provided by the experiments of 
McKelvey, Palfrey, and Weber (2000) based on games with an “asymmetric match-
ing pennies” structure (Ochs 1995); see Figure 7. The Row player earns a positive 
amount if the players match on “Heads” or “Tails” (and then the Column player 
earns nothing), or the Column player earns a positive amount if the players mis-
match (and the Row player earns nothing). McKelvey, Palfrey, and Weber (2000) 
consider four related games: in game A, X = 9 ; in game D, X = 4 ; game B payoffs 
are the same as game A’s except Column payoffs are multiplied by 4; game C pay-
offs are the same as game A’s except all payoffs are multiplied by 4.

10 The model estimates without loss aversion are: n = 1 for action sampling, n = 1 for payoff sampling, and 
λ = 0 for logit-QRE. The logit-QRE estimate shows that the model cannot by itself explain behavior in the game 
of Figure 5, which was the main motivation for its design. With loss aversion the estimates are: n = 4 for action 
sampling, n = 4 for payoff sampling, and λ = 0.024 for logit-QRE.

Figure 5. A Matching Pennies Game with “Safe” (200/160) and 
“Risky” (370/10) choices (left) and the Transformed Game (right).

 Left 

Down 
160, 10200, 160Up
10, 370370, 200

Right  Left 
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0, −30040, 0Up

−300, 210210, 40

Right
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To compute the impulse balance equilibria for these games note that the max-
min payoff is 0 for both players (as it is the second-lowest payoff), so the trans-
formed games are equivalent to the original games. In other words, loss aversion 
plays no role in these games, which makes them ideal to further test the different 
stationary concepts.

A simple calculation shows that for the game in Figure 7, the impulse balance 
equilibrium predictions for the Row and Column players are11

(1)   p H  =    √ 
_

 X   _ 
1 +  √ 

_
 X  
   ,  q H  =   1 _ 

1 +  √ 
_

 X  
   .

Since multiplicative factors drop out of the impulse balance equilibrium calcula-
tions, the predictions for games A, B, and C are identical:  p H  = 0.75 for Row and  
q H  = 0.25 for Column, while for game D we have  p H  = 0.67 for Row and  q H  = 0.33 
for Column.

The aggregate choice frequencies observed in the experiments are shown in 
Table 3 together with the predictions of the five stationary concepts (estimating any 
free parameters across all four games, with best-fitting parameters shown at the top 
of Table 3).12 The rightmost column reports the number of sessions of each game.13 
Using a Wilcoxon signed-rank test to evaluate differences in MSD across McKelvey, 
Palfrey, and Weber’s sessions (number of observations shown in the rightmost col-
umn of Table 3) shows that all non-Nash models are significantly more accurate 

11 The impulse balance equations are X(1 − p)q = p(1 − q) for the Row player and pq = (1 − p)(1 − q) for the 
Column player.

12 Recall that the games considered by McKelvey, Palfrey, and Weber (2000) are such that loss aversion plays no 
role, so all models are estimated without loss aversion.

13 In the McKelvey, Palfrey, and Weber (2000) experiments, subjects played 50 periods using one of their game 
forms and then played another 50 periods using another one of their game forms. In the analysis reported here, we 
consider only the first 50 periods of play.

Figure 6. Theory-Specific Mean-Squared Distances for Game 4 from  
Goeree, Holt, and Palfrey (2003) for Models with and without Loss Aversion
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than Nash (at the 1 percent level), the action-sampling and payoff-sampling mod-
els are more accurate than QRE and impulse balance equilibrium (at the 2 percent 
level), and impulse balance equilibrium appears to have a nonnegligible advantage 
over QRE, but it does not reach conventional levels of significance in this dataset.

III.  Conclusion

This comment corrects and reexamines some of the results reported by SC. 
Correcting for errors in estimating two of the five stationary concepts they consider, 
QRE and action-sampling equilibrium, it appears that their design does not differ-
entiate among the non-Nash stationary concepts that were considered. They also 
suggest it is desirable to create games which discriminate among these non-Nash 
theories, a direction which we pursue by reporting two new analyses. We first tested 
these concepts further by using data from previous laboratory experiments on a 
game constructed to show that QRE can predict poorly. Applying all five stationary 
concepts to those data, with and without loss aversion, shows that the loss aversion 
that is a fixed feature of impulse balance equilibrium is crucial for its explanatory 
power in this particular game. This result extends our understanding of which mod-
eling features of various theories are responsible for accurate fit. We also tested the 
stationary concepts on four variants of matching pennies games. In these games, all 
theories fit much better than Nash, but action sampling and payoff sampling fit a 
little better than the other non-Nash theories.

One distinguishing element of impulse balance equilibrium vis-à-vis the other 
non-Nash models is that it is “parameter free,” since the loss-aversion coefficient 
is calibrated to 2. This can be a desirable feature from a theoretical viewpoint but 
makes the model less suitable for empirical applications. Ockenfels and Selten 
(2005), for example, introduce weighted impulse balance equilibrium to allow for a 
general ratio, γ, that measures the importance of upward and downward impulses in 
first-price auctions. They estimate that γ = 3, i.e., upward impulses that occur when 
the auction is lost are roughly three times larger than downward impulses that occur 
when the winner of the auction “left money on the table.” As Ockenfels and Selten 
(2005, p. 166) argue, “…there is no reason to assume that γ cannot change with 

Table 3—Five Stationary Concepts Together with the Observed Relative Frequencies  
for each of the Experimental Games in McKelvey, Palfrey, and Weber (2000) 

where Loss Aversion Plays No Role (all models are estimated without loss aversion)

Game Nash
QRE 

(λ = 3.62)

Action-
sampling 
(n = 3)

Payoff-
sampling 
(n = 3)

Impulse 
balance

Observed 
average

Number of 
observations

A U 0.500 0.760 0.643 0.625 0.750 0.648 3
L 0.100 0.132 0.291 0.276 0.250 0.245

B U 0.500 0.573 0.643 0.625 0.750 0.627 2
L 0.100 0.108 0.291 0.276 0.250 0.300

C U 0.500 0.575 0.643 0.625 0.750 0.608 2
L 0.100 0.102 0.291 0.276 0.250 0.218

D U 0.500 0.661 0.643 0.625 0.667 0.643 1
L 0.200 0.237 0.291 0.276 0.333 0.343

MSD 0.0441 0.0256 0.0057 0.0054 0.0153
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experiment design parameters…” Indeed, a survey of studies that estimate loss aver-
sion coefficients from lab or field data shows that γ varies (from 1.5 to 4.5) across 
games, contexts, and subject pools; see Colin F. Camerer (2009).

Allowing for a one-parameter extension of the basic impulse balance model to 
improve empirical applicability is closely related to the introduction of the precision 
parameter in QRE and to sample size parameters in action- and payoff-sampling 
theories. Comparing these models with Nash equilibrium, and impulse balance 
with a weight of two, raises interesting questions about the advantages and disad-
vantages of parametric approaches. Certainly, both parametric and parameter-free 
approaches should be explored, but our view of parametric models of behavior in 
games is more optimistic than the view articulated by SCG in their reply to this com-
ment. In SCG (2011, p. 1044) they state that “nonparametric concepts like the IBE 
[impulse balance equilibrium] have the advantage to serve as the basis of theoreti-
cal investigations just like NE [Nash equilibrium].” Of course, parametric models 
can also be investigated theoretically, and have been, many times. Indeed, many 
comparative static predictions from a wide range of models in all areas of econom-
ics are of this sort; they report how behavior should respond to parameter changes 
(e.g., how behavior varies with a risk-aversion or time-preference parameter). To 
be sure, those theoretical results will typically depend on specific parameter values, 
but they are theoretical results nonetheless. SCG (2011, p. 1043) also assert that  
“Moreover, it is obviously not possible to transfer parameter estimates for a small 
number of very similar games to wider classes of games.” It is surely too pessimistic 
to declare such predictions “not possible.” Making accurate new predictions is quite 
possible if parameter variation is not very wide, or if theory can eventually be devel-
oped to explain why parameters vary across games. In fact, if parameter variation 
reflects some fundamental aspect of players’ cognition, such as experience, analyti-
cal skill, attentiveness, or memory, then parameters should vary across games. Then 
the only question is how reported estimates can be used to create good theory about 
how parameters vary, turning that variation from an inevitable bug into a valuable 
feature.
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