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Abstract

We apply basic techniques from convex analysis to develop a simple and unified

treatment of optimal mechanism design for linear one-dimensional social choice envi-

ronments. Our approach clarifies the literature on reduced form implementation and

generalizes it to social choice settings. We incorporate incentive compatibility using

well-known results from majorization theory and prove equivalence of Bayesian and

dominant-strategy implementation. We then derive the optimal mechanism for any

linear objective of agent values using standard micro-economic tools such as Hotel-

ling’s lemma. Finally, we extend our results to concave objectives of agent values and

payments by providing a fixed-point equation characterizing the optimal mechanism.
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1. Introduction

Mechanism design concerns the creation of optimal social systems by maximizing well-defined

objectives taking into account resource constraints and participants’ incentives and hidden

information. It provides a framework to address questions like “what auction format assigns

goods most efficiently or yields the highest seller revenue” and “when should a public project

such as building a highway be undertaken?” The difficulty in answering these questions stems

from the fact that the designer typically does not possess detailed information about bidders’

valuations for the goods or about voters’ preferences for the public project. A well-designed

mechanism should therefore elicit participants’ private information in a truthful, or incentive

compatible, manner and implement the corresponding social optimum accordingly.

The constraints imposed by incentive compatibility are generally treated separately from

other more basic constraints, such as resource constraints. As a result, mechanism design

theory appears to have developed differently from classical approaches to consumer and pro-

ducer choice theory despite some obvious parallels. For example, in producer choice theory,

the firm also maximizes a well-defined objective: its profit. Given a feasible production set

it is a standard, albeit potentially tedious, exercise to compute the firm’s profit as a function

of input and output prices. In turn, given a firm’s profit function its production set can be

uniquely recovered, and the firm’s optimal production plan follows by taking the gradient of

the profit function – Hotelling’s lemma.

In this paper, we draw a parallel with classical choice theory to provide a novel geometric

approach to mechanism design for any linear one-dimensional social choice problems. We

observe that the set of feasible allocations – the analogue of the production set – consists of

a collection of simplices for which the support function – the analogue of the profit function –

can be obtained “off the shelf” without doing any calculations. The relationship between the

support function and the corresponding convex set then define inequalities that clarify the

origin of the “Maskin-Riley-Matthews” conditions for reduced-form auctions (Maskin and

Riley, 1984; Matthews, 1984) and allow us to extend reduced-form implementation to social

choice settings.

As noted above, a distinguishing role in mechanism design is played by incentive compa-

tibility, which we incorporate using their geometric characterization. Borrowing results from

majorization theory due to Hardy, Littlewood, and Pólya (1929) we elucidate the “ironing”

procedure introduced by Mussa and Rosen (1978) and Myerson (1981). We show that the
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support function for the set of feasible and incentive compatible allocations is simply the sup-

port function for the feasible set, evaluated at ironed weights. Furthermore, we establish the

equivalence of Bayesian and dominant-strategy implementation (Manelli and Vincent, 2010;

Gershkov et al., 2013) by showing that the same support function results whether Bayesian

or dominant-strategy incentive constraints are imposed.

To summarize, the support function for the set of feasible and incentive compatible al-

locations for any linear one-dimensional social choice problems – not just auctions – can be

obtained using off-the-shelf results from convex analysis and majorization theory that predate

any research in mechanism design. Moreover, the support function is piece-wise linear and it

is straightforward to take the gradient and apply Hotelling’s lemma to derive the optimal me-

chanism for any linear objective. Finally, we adapt our approach to include general concave

objectives that depend on both allocations and transfers and provide a simple fixed-point

condition characterizing the optimal mechanism.

This paper is organized as follows. Section 2 illustrates our approach with a simple

auction example. Section 3 considers linear one-dimensional social choice problems: we derive

the support function for the set of feasible allocations (Section 3.1), discuss reduced form

implementation (Section 3.2), incorporate incentive compatibility (Section 3.3), establish

equivalence of Bayesian and dominant strategy implementation (Section 3.4), and derive the

optimal mechanism for arbitrary linear objectives (Section 3.5). Section 4 considers concave

objectives and incorporates transfers into the support function. We discuss related literature

and possible extensions in the conclusions (Section 5). The Appendix contains all proofs.

2. A Simple Example

Consider a standard producer choice problem π(p) = maxy∈Y p · y where the production set

is characterized by a square-root production technology Y = {(−y1, y2) ∈ IR2
+ | y2 ≤

√
−y1},

see Figure 1. It is readily verified that the optimal levels of inputs and outputs are given by

y2(p) =
√
−y1(p) = p2

2p1
, resulting in profits π(p) =

p22
4p1

. Given a convex production set the

profit function is uniquely determined and, in turn, the profit function uniquely determines

the production set Y = {y |p · y ≤ π(p) ∀p ∈ IR2
+}. Moreover, it determines the optimal

input and output via Hotelling’s lemma, y(p) = ∇π(p). The main innovation of this paper

is to apply these well-known micro-economics tools to problems in mechanism design, e.g. to

derive optimal mechanisms as the gradient of the support function.
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p · y = π(p)

p · ŷ = π̂ < π(p)

p

y1

y2

y(p)

Y

π(p) = maxy∈Y p · y

Y = {y |p · y ≤ π(p) ∀p ∈ IR2
+}

y(p) = ∇π(p)

Figure 1. A profit-maximization example to illustrate (i) the relationship between production set

Y = {(−y1, y2) ∈ IR2
+ | y2 ≤

√
−y1} and its profit function π(p) =

p22
4p1

, and (ii) Hotelling’s lemma.

To this end, we define the support function SC : IRn → IR∪{+∞} of a closed convex set

C ⊂ IRn as

SC(w) = sup{v ·w |v ∈ C},

with v ·w =
∑n

j=1 vjwj the usual inner product. From the support function one can recover

the associated convex set, C =
{
v ∈ IRn |v · w ≤ SC(w) ∀w ∈ IRn

}
, and the solution to

the maximization problem supv∈C α ·v as v(α) = ∇SC(α).1 Of course, this approach would

be unattractive if computing the support function was tedious or intractable. For a broad

class of mechanism design problems, however, the underlying feasible set is simply a product

of probability simplices for which the support function is well known.

To illustrate, consider a single-unit auction with two ex ante symmetric bidders and two

equally likely types, xl < xh. Assuming a symmetric allocation rule, the probability that

a bidder obtains the object is summarized by q = (qll, qlh, qhl, qhh) where the first (second)

subscript denotes the bidder’s (rival’s) type. The symmetry and feasibility constraints are

presented in the first line of Table 1 while the second line shows the associated support

functions. The set of feasible allocations is the Cartesian product of the three sets presented

in the first line for which the support function is simply the sum of individual support

functions

Sq(w) =
1

2
max(0, wll) + max(0, wlh, whl) +

1

2
max(0, whh) (1)

A bidder’s interim (or expected) allocations Q = (Ql, Qh) are linear transformations of the

ex post allocations: Ql = 1
2
(qll + qlh) and Qh = 1

2
(qhl + qhh), which we summarize as Q = Lq

1While the support function may not be everywhere differentiable, it is subdifferentiable as it is a convex
function that is the supremum of linear functions. At points of non-differentiability, any v ∈ ∇SC(α), where
∇SC denotes the subdifferential, is a solution (see Rockafellar, 1997).
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Feasibility constraints 0 ≤ qll ≤ 1
2

0 ≤ qlh, qhl, qlh + qhl ≤ 1 0 ≤ qhh ≤ 1
2

Support function 1
2

max(0, wll) max(0, wlh, whl)
1
2

max(0, whh)

Table 1. Feasibility constraints and associated support functions for a simple example.

with L being the relevant two-by-four matrix. A basic property of the inner product is that

Q ·W = Lq ·W = q · LTW, from which it follows that the support function for the set of

feasible interim allocations is

SQ(W) = Sq(LTW) =
1

4
max(0,Wl) +

1

2
max(0,Wl,Wh) +

1

4
max(0,Wh) (2)

The set of feasible interim allocations follows from Q ·W ≤ SQ(W) for all W ∈ IR2 and is

shown in the left panel of Figure 2.2

Of course, not all feasible allocations satisfy Bayesian incentive compatibility (BIC), which

requires that interim allocations are monotonic in types: Qh ≥ Ql (see Myerson, 1981).

Graphically, the set of BIC allocations can be seen as the intersection of the set of feasible

interim allocations and the “above the 45-degree line” half-space (see the middle panel of

Figure 2). This half-space can be written as (1,−1) ·Q ≤ 0 with associated support function

SH(W) =

 0 if W = Λ(1,−1)

∞ if W 6= Λ(1,−1)

for any Λ ≥ 0. The support function for the intersection follows from the convolution

SBIC(W) = inf
W1+W2 = W

SQ(W1) + SH(W2) = inf
Λ≥ 0

SQ(W − Λ(1,−1))

The solution to this minimization problem is Λ = 1
2

max(0,Wl −Wh) so that SBIC(W) =

SQ(W+) where W+ denote “ironed” weights

W+ =

 (Wl,Wh) if Wl ≤ Wh

1
2
(Wl +Wh,Wl +Wh) if Wl > Wh

(3)

Now consider maximization of a linear objective α ·Q = αlQl +αhQh over the set of feasible

2One can easily explain the maximum expected probability of winning 3
4 . Symmetry implies that a bidder

wins with probability 1
2 when facing a rival of the same type, which occurs with probability 1

2 . Hence, the
maximum expected probability of winning is 1

2 ·
1
2 + 1

2 · 1 = 3
4 .
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Figure 2. The set of feasible Bayesian incentive compatible interim allocations (right) can be seen

as the intersection of the feasible set (left) with the “above the 45-degree line” half-space (middle).

On the right, the dashed lines are level-surfaces for the linear objective α ·Q. The dots indicate

optimal allocations when αl < 0 < αh (small), 0 < αl < αh (medium), 0 < αh < αl (large).

BIC allocations. For example, revenue maximization corresponds to α = (2xl − xh, xh),

see equation (12) in Section 3.5, while welfare maximization correspond to α = (xl, xh).

In the revenue-maximization case, either αl < 0 < αh which yields ∇SBIC(α) = (0, 3
4
), or

0 < αl < αh which yields ∇SBIC(α) = (1
4
, 3

4
) as indicated by the small and medium-sized

dots in Figure 2.3 These optimal interim allocations follow by using the symmetric allocation

rules q = (0, 0, 1, 1
2
) and q = (1

2
, 0, 1, 1

2
) respectively. The intuition is that the low type is

screened out (e.g. by using a reserve price) when the marginal revenue 2xl − xh is negative

while the allocation rule is efficient when this marginal revenue is positive.

The efficient allocation rule is also optimal for welfare maximization, as this is another

example when 0 < αl < αh. A new solution arises when 0 < αh < αl, e.g. when the social

objective places higher weight on the low type possibly because of redistributive or fairness

concerns. The support function in (2) reduces to 1
2
Wl + 1

2
Wh when 0 < Wh < Wl, since the

weights are replaced by their ironed versions, see (3). Hence, ∇SBIC(α) = (1
2
, 1

2
), a solution

shown by the large dot in Figure 2. This solution is implemented by the random allocation

rule q = (1
2
, 1

2
, 1

2
, 1

2
).

Overall, the above example illustrates how the support function for the set of feasible and

BIC interim allocations can be derived using basic techniques of convex analysis. The optimal

mechanisms for any linear objectives then follow from Hotelling’s lemma. We generalize these

insights to social choice environments and provide more novel results in the next section.

3Note that SBIC(W) reduces to 3
4Wh when Wl < 0 < Wh and to 1

4Wl + 3
4Wh when 0 < Wl < Wh.
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3. Social Choice Implementation

We consider a linear one-dimensional social choice environment with independent private

values and quasi-linear utilities. There is a finite set of agents I = {1, 2, . . . , I} and a finite

set of social alternatives K = {1, 2, . . . , K}. When alternative k is selected, agent i’s payoff

equals aikx
i where aik ∈ IR is common knowledge and xi ∈ IR+ is agent i’s privately-known

type, which is distributed according to a commonly known probability distribution f i(xi) with

discrete supportX i = {xi1, . . . , xiN i}, where xij < xij+1 for j = 1, ..., Ni−1.4 Let x = (x1, ..., xI)

denote the profile of agents’ types with x ∈ X =
∏

i∈I X
i. Without loss of generality we

restrict attention to direct mechanisms characterized by K + I functions, {qk(x)}k∈K and

{ti(x)}i∈I , where qk(x) is the probability that alternative k is selected and ti(x) ∈ IR is agent

i’s payment. We define agent i’s value as vi(x) ≡
∑

k∈K a
i
kqk(x) so that agent i’s utility from

truthful reporting, assuming others report truthfully as well, is ui(x) = xivi(x) − ti(x). We

use capital letters to indicate interim variables: V i(xi) = Ex−i(vi(x)), T i(xi) = Ex−i(ti(x)),

and U i(xi) = xiV i(xi)− T i(xi) denote agent i’s interim value, interim payment, and interim

utility respectively.

3.1. Feasibility

The probabilities with which the alternatives occur satisfy the usual feasibility conditions:

they should be non-negative, qk(x) ≥ 0 for k ∈ K, and sum up to one,
∑

k∈K qk(x) = 1. In

other words, for each type profile, q(x) = {qk(x)}k∈K defines a K-dimensional simplex with

support function Sq(x)(w(x)) = maxk∈K wk(x) and w(x) ∈ IRK . Furthermore, the support

function for the Cartesian product of sets equals the sum of support functions (Rockafellar,

1997) so the support function for the set of all feasible allocations q = {q(x)}x∈X is given by

Sq(w) =
∑
x∈X

max
k∈K

wk(x)

where w = {w(x)}x∈X ∈ IRK|X|.

For vector q ∈ IRK|X| and any linear transformation A, we have Aq·w = q·ATw where AT

is the transpose of A. Hence, for set of probability simplicies C, we have SAC(w) = SC(ATw).

4This formulation includes many important applications, e.g. single or multi-unit auctions, public goods
provision, bilateral trade, etc.
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Therefore, the support function for the set of feasible values vi(x) =
∑

k∈K a
i
kqk(x) equals

Sv(w̃) =
∑
x∈X

max
k∈K

∑
i∈I

aikw̃
i(x) (4)

where w̃ = {w̃i(x)}x∈X,i∈I ∈ IR
∑

i |Xi|. Moreover, interim values are a linear transformation

of values: V i(xi) =
∑

x−i f−i(x−i)vi(x) where f−i(x−i) =
∏

j 6=i f
j(xj). To arrive at expres-

sions symmetric in probabilities we define the support function for interim values using a

probability-weighted inner product

V ·W =
∑
i∈I

∑
xi ∈Xi

f i(xi)V i(xi)W i(xi), (5)

where W ∈ IR
∑

i |Xi|. Under the interim transformation all terms are then multiplied by∏
i∈I f

i(xi) and the sum over type profiles in (4) turns into an expectation.

Lemma 1. The support function for the set of feasible interim values is

SV(W) = Ex

(
max
k∈K

∑
i∈I

aikW
i(xi)

)
(6)

and the feasible interim values V satisfy V ·W ≤ SV(W) for all W ∈ IR
∑

i |Xi|.

Note that the result of Lemma 1 applies to much more general environemnts with multi-

dimensional and correlated types. In a companion paper Goeree and Kushnir (2016) we also

extend the result to settings with non-linear utilities and interdependent values.

3.2. Reduced Form Implementation

It is insightful to work out the inequalities in Lemma 1 for single-unit auctions, which fit the

social choice framework as follows: alternative i = 1, . . . , I corresponds to the event when

bidder i wins, i.e. aii = 1 and aik = 0 for k 6= i, and alternative I + 1 corresponds to the

event when the seller keeps the object. In this case, the reduced form value V i(xi) is equal

to a bidder i’s interim chance of winning Qi(xi) = Ex−i(qi(x)) and the support function in

Lemma 1 simplifies to5

SQ(W) = Ex

(
max
i∈I

(0,W i(xi))
)

(7)

5Note that the zero in (7) corresponds to the alternative when the seller keeps the object.
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An exhaustive set of inequalities follows by choosing, for each i ∈ I, a subset Si ⊆ X i and

setting W i(xi) = 1 for xi ∈ Si and 0 otherwise and then varying the set Si.

Proposition 1. For the single-unit auction case, the set of feasible interim allocations is

determined by ∑
i∈I

∑
xi ∈Si

f i(xi)Qi(xi) ≤ 1−
∏
i∈I

∑
xi 6∈Si

f i(xi) (8)

for any subset Si ⊆ X i, i = 1, . . . , I.

The inequalities in Proposition 1 are known as the Maskin-Riley-Matthews conditions for

reduced form auctions. They were conjectured to be necessary and sufficient by Matthews

(1984) based on the following intuition: the probability that a certain bidder with a certain

type wins (left side) can be no higher than the probability that such a bidder exists (right

side). The conjecture was subsequently proven and generalized by Border (1991, 2007).

Besides clarifying their origin, Lemma 1 extends these conditions to social choice problems.

3.3. Incentive Compatibility

A mechanism (q, t) is Bayesian incentive compatible (BIC) if truthful reporting is a Bayes-

Nash equilibrium. We also say that an allocation is BIC implementable if there exist transfers

that form a BIC mechanism when coupled with the allocation. Myerson (1981) showed that

an allocation q is BIC implementable if and only if for each i = 1, . . . , I the interim values

are increasing: V i(xij−1) ≤ V i(xij) for j = 2, . . . , N i.6 Let e(xij) denote the unit vector of

IR
∑

i |Xi| in the direction xij for i = 1, . . . , I and j = 1, . . . , N i. Using the definition of the

probability-weighted inner product (5) the Bayesian incentive constraints can be written as

(
e(xij−1)/f i(xij−1)− e(xij)/f

i(xij)
)
·V ≤ 0

for i = 1, . . . , I and j = 2, . . . , N i. These constraints define half spaces and their intersection

with the set of feasible values defines the set of feasible BIC values. The support function

for this intersection is (e.g. Rockafellar, 1997)

SBIC(W) = inf
Λ≥ 0

SV(W −
I∑

i= 1

N i∑
j= 2

Λi(xij−1)(
e(xij−1)

f i(xij−1)
−

e(xij)

f i(xij)
)) = inf

Λ≥ 0
SV(Ŵ) (9)

6An increasing sequence refers to a weakly increasing sequence throughout the paper.
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where Ŵ i(xij) = W i(xij)− (Λi(xij)− Λi(xij−1))/f i(xij) for i = 1, . . . , I and j = 1, . . . , N i with

Λi(xi0) = Λi(xiN i) = 0. Since the Λ’s are non-negative it is readily verified that

l∑
j= 1

f i(xij)Ŵ
i(xij) ≤

l∑
j= 1

f i(xij)W
i(xij)

for l = 1, . . . , N i with equality for l = N i, which we abbreviate as Ŵi �f i Wi. For two

increasing sequences, W and W′, we say that W′ f i-majorizes W if W �f i W′.

The minimization problem in (9) can thus be written as infŴi�fiW
i SV(Ŵ). Using the

seminal Hardy, Littlewood, and Pólya’s (1929) result we show that its solution Wi
+ is the

“largest” increasing sequence such that Wi
+ �f i Wi, i.e. Wi

+ f i-majorizes any other increa-

sing sequence of weights Ŵi that satisfy Ŵi �f i Wi. We note that sequence Wi
+ has to be

increasing and generally depends on the distribution of agent i’s types.

Lemma 2. The support function for the set of feasible and Bayesian incentive compatible

interim values is given by

SBIC(W) = Ex

(
max
k∈K

∑
i∈I

aikW
i
+(xi)

)

for any W ∈ IR
∑

i |Xi|.

Figure 3 illustrates majorization for the case of three equally likely types. The leftmost

panel shows sequences W1 = (1, 2, 6), W2 = (2, 6, 1), and W3 = (6, 1, 2). The rightmost

panel shows the corresponding majorized sequences W1
+ = (1, 2, 6), W2

+ = (2, 7
2
, 7

2
), and

W3
+ = (3, 3, 3). Note that W = W+ if and only if W is increasing. The middle panels show

the cumulative sequences for W (left) and W+ (right) and demonstrates that the cumulative

of W+ is the largest convex function below the cumulative of W.

The discrete majorization procedure thus parallels the “ironing” technique introduced by

Mussa and Rosen (1978) and Myerson (1981) for continuous types. This parallel establishes

a convenient way to derive the ironed values. As we show in Appendix (Lemma A2), the

majorized sequence delivers the minimum to the sum of functions defined over sequences

satisfying the majorzed constraints for any increasing convex function. In particular, one

could consider a quadratic function and minization problem W+ = arg minŴ�W.

∑
j Ŵ

2
j .
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Figure 3. The three sequences in the leftmost panel are W1 = (1, 2, 6) (solid blue circles), W2 =

(2, 6, 1) (red squares), and W3 = (6, 1, 2) (open green circles). The rightmost panel shows the

corresponding majorized sequences: W1
+ = (1, 2, 6), W2

+ = (2, 7
2 ,

7
2), and W3

+ = (3, 3, 3). The two

middle panels (with rescaled y-axis) show the cumulative sequences for W (middle-left) and W+

(middle-right). The cumulative of W+ is the largest convex function below the cumulative of W.

This minimization problem could be simply used to derive the majorized or ironged sequence

for any given sequence. This could be easily verified for the above examples.

3.4. BIC-DIC Equivalence

Similar to BIC we can incorporate dominant-strategy incentive compatibility (DIC) into the

support function. Surprisingly, this yields the same support function for the interim values.

Example 1. Consider again the auction example of Section 2 but without the symmetry

assumption. The support function for the allocation rules qi = (qill, q
i
lh, q

i
hl, q

i
hh) for i = 1, 2

is max(0, w1
ll, w

2
ll) + max(0, w1

hl, w
2
lh) + max(0, w1

lh, w
2
hl) + max(0, w1

hh, w
2
hh). Imposing the DIC

constraints, qill − qihl ≤ 0 and qilh − qihh ≤ 0 for i = 1, 2, and applying the interim mapping to

derive the support function for interim allocations yields

SDIC(W) = inf
0≤λil ,λ

i
h

1

4
max(0,W 1

l − λ1
l ,W

2
l − λ2

l ) +
1

4
max(0,W 1

h + λ1
l ,W

2
l − λ2

h)

+
1

4
max(0,W 1

l − λ1
h,W

2
h + λ2

l ) +
1

4
max(0,W 1

h + λ1
h,W

2
h + λ2

h)

For agent i = 1, 2 there are two minimization parameters, λil and λih, while in the BIC case

there is only one, Λi. However, the above minimization problem has a solution that sets the

two equal, λil = λih = 1
2

max(0,W i
l −W i

h), which is also the solution for Λi so the BIC and

DIC support functions coincide. This solution is apparent when considering the minimization

problem over one agent’s parameters ignoring the dependence on the other’s weights. The
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reason we can consider each agent’s DIC constraints separately stems from their geometric

interpretation: each represents the intersection of the feasible set with a half space. �

The next result shows that the BIC and DIC support functions coincide more generally.

Proposition 2. The support functions for the set of feasible interim values satisfying BIC

or DIC constraints coincide: SDIC(W) = SBIC(W) for any W ∈ IR
∑

i |Xi|.

This result implies that for any Bayesian incentive compatible mechanism there exists an

equivalent dominant-strategy incentive compatible mechanism, a result first shown for the

auction case by Manelli and Vincent (2010) and generalized to social choice settings by

Gershkov et al. (2013).

3.5. Optimal Mechanisms for Linear Objectives

Consider maximization of the linear objective α ·V over the set of feasible, incentive compa-

tible interim values. Then SBIC(α) is the optimal value and the optimal mechanism follows

from Hotelling’s lemma, i.e. V(α) = ∇SBIC(α), see Rockafellar (1997). Proposition 2 ensu-

res this mechanism can be written as a dominant strategy incentive compatible mechanism.

Proposition 3. For any social choice problem and any linear objective, α ·V, an optimal

dominant strategy incentive compatible mechanism is given by the allocation rule

qk(x) =

 1/|M | if k ∈ M ≡ argmaxk∈K
∑

i∈I a
i
kα

i
+(xi)

0 otherwise
(10)

and corresponding payment rule7

ti(x) =
∑
k∈K

aik
(
xiqk(x)−

∑
xij <x

i

(xij+1 − xij)qk(xij,x−i)
)

(11)

Typical examples of linear objectives are expected surplus, Ex(
∑

i∈I x
iV i(xi)) = x ·V, and

expected revenue, Ex(
∑

i t
i(x)) = MR ·V, where marginal revenues are defined as

MRi(xij) = xij −
(
xij+1 − xij

)1− F i(xij)

f i(xij)
, i = 1, . . . , I, j = 1, . . . , N i, (12)

with xiN i+1 = xiN i and F i(xij) =
∑j

l=1 f
i(xil). These marginal values are the discrete analogues

of Myerson’s (1981) “virtual values” for the continuous case.

7The specified payment rule (which is not unique) ensures that the optimal mechanism (q, t) is also ex
post individually rational. See Section 4 for more details.
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4. General Concave Objectives

In many applied design problems there are distributional goals besides surplus and revenue

maximization. Federal procurement in the US, for instance, awards at least 23% of its $500

billion annual budget to small businesses, with lower targets for businesses owned by women,

disabled veterans, and the economically disadvantaged (Athey, Coey, and Levin, 2013). One

way such preferential treatment can be achieved is by using “set asides,” which constrain the

allocation rule. For example, in the US, procurement contracts under $100,000 are reserved

for small businesses and around $30 billion in contracts is awarded via set-aside programs.

An alternative way is to adapt the payment rule to reflect subsidies to favored firms. The US

Federal Communications Commission, for instance, has applied bidding credits to minority-

owned firms in some of their spectrum auctions. To incorporate set asides and subsidies we

consider objectives that depend on both allocations and payments. We drop the restriction

the objective is linear and instead assume it is concave. We show that the optimal mechanism

can still be derived using Hotelling’s lemma, which now results in a fixed-point equation.

We first derive the support function for the set of interim values and payments, V and T,

that satisfy, for each i = 1, . . . , I, the Bayesian incentive compatibility (BIC) constraints8

(V i(xij)− V i(xij−1))xij−1 ≤ T i(xij)− T i(xij−1) ≤ (V i(xij)− V i(xij−1))xij (13)

for j = 2, . . . , N i, and the interim individually rationality (INIR) constraints: U i(xi) =

V i(xi)xi − T i(xi) ≥ 0 for xi ∈ X i. Dominant strategy incentive compatibility (DIC) and ex

post individual rationality (EXIR) are defined similarly. To include interim payments T i(xi)

into the support function we introduce weights Zi(xi) for xi ∈ X i, i = 1, ..., I and generalize

the marginal revenues in (12) to allow for different weights for each of the payments:

MRZi(xij) = xijZ
i(xij)−

xij+1 − xij
f i(xij)

∑
l>j

f i(xil)Z
i(xil) (14)

for j = 1, ..., N i with xiN i+1 = xiN i . This expression reduces to (12) when Zi(xij) ≡ 1.

8We consider only adjacent incentive constraints because utilities satisfy the single-crossing condition.
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O

O′ < O ∇O

(V,T) ∈ ∇S(∇O(V,T))

Figure 4. The optimal interim expected values and payments belong to the gradient of the support

function evaluated at the vector of weights that is equal to the gradient of the objective function

evaluated at the optimal interim expected values and payments.

Lemma 3. The support function for the set of feasible interim values and payments that

satisfy BIC (DIC) and INIR (EXIR) is given by

SDIC(W,Z) = SBIC(W,Z) = Ex

(
max
k∈K

∑
i∈I

aik(W
i + MRZi)+(xi)

)
(15)

for any W ∈ IR
∑

i |Xi| and Z ∈ IR
∑

i |Xi|
+ .

Now consider a differentiable concave objective function O(V,T) that is increasing in interim

payments. Concave objectives have convex indifference curves and maximization requires

that, at the optimal point, the gradient ∇O is normal to the surface of the feasible, incentive

compatible set, see Figure 4. Moreover, the gradient of the support function evaluated at

this normal vector should yield the optimal point.

Proposition 4. For any social choice problem and any concave differentiable objective

O(V,T) increasing in interim payments the interim values and payments corresponding to

an optimal DIC and EXIR mechanism satisfy9

(V,T) ∈ ∇SDIC(∇O(V,T)) (16)

Fixed point equation (16) is a characterization of optimal mechanisms. In contrast to the

linear case of Proposition 3 it is not possible to provide explicit solutions for the ex post

allocation and payment rules, or their interim equivalents for that matter. Note, however,

9Note that the statement of the proposition immediately extends to any differentiable quasi-concave
objective increasing in interim payments.
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that the weights for the values and payments enter the support function (15) as linear combi-

nations, which implies that their gradients are closely related. This observation can be used

to express the optimal interim payments in terms of the optimal interim values

T i(xi) = V i(xi)xi −
∑

xij <x
i
V i(xij)(x

i
j+1 − xij)

which is the interim version of (11).10

5. Conclusion

Mechanism design has been successfully applied to a variety of societal issues including the

matching of students to schools, interns to hospitals, and organ donors to patients as well

as the design of high-stakes auctions to allocate public assets. This paper provides a new

powerful perspective on some of these applications by introducing a novel approach to the

analysis of optimal mechanisms maximizing given objectives.11 Our approach is based on the

one-to-one relation between a convex set and its support function. While we are the first to

exploit this relation in mechanism design, related methods have a long history in economics

and finance and are now standardly taught in micro PhD classes (e.g. Mas-Colell, Whinston,

and Green, 1995, p.63).12

Using the novel approach, we first show that the support function for the set of feasible

allocations in social choice environments can be obtained off the shelf without doing any cal-

culations. We use this to extend the recent literature on reduced form auctions (e.g. Vohra,

2011; Che, Mierendorff, and Kim, 2013; Hart and Reny, 2015) to social choice settings.13

Next, we employ results from majorization theory to incorporate incentive compatibility

to any linear one-dimensional social choice problems and elucidate the “ironing” procedure

introduced by Mussa and Rosen (1978) and Myerson (1981).14 Our support-function cha-

racterization of the set of feasible and incentive compatible interim values facilitates an

10This expression is an analog of the envelope theorem for continuous settings (Milgrom and Segal, 2002).
11Hence, our paper is related, in spirit, to Bulow and Roberts (1989) who gracefully reinterpret the problem

of the revenue-maximizing auction through the prism of monopolistic third-degree price discrimination. Simi-
larly, we use basic tools of convex analysis to provide a unified and simple treatment of optimal mechanisms.

12Support functions have been applied in decision theory (Dekel et al., 2001), econometrics (Beresteanu
and Molinari, 2008), and mathematical finance (Ekeland et al., 2012). The relation between a convex closed
set and its support function is an example of the duality in convex analysis that has been previously heavily
exploited in economics (see Bardsley, 2012; Makowski and Ostroy, 2013; and Baldwin and Klemperer, 2015).

13Alaei et al. (2012) and Cai et al. (2012) exploit reduced form auctions in computer science literature.
14See e.g. Mosler (1994) for a survey of the use of majorization theory in economics.
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alternative proof for the equivalence of Bayesian and dominant-strategy implementation (see

Manelli and Vincent, 2010; Gershkov et al., 2013; Kushnir, 2015: Kushnir and Liu, 2016).15

The support function is piecewise linear, which makes it straightforward to apply Hotelling’s

lemma to derive the optimal mechanism for any linear objective. Finally, we extend our

results to concave objectives by providing a fixed-point equation characterizing the optimal

mechanism.

Importantly, our geometric approach is not limited to the environments studied in this

paper, i.e. one-dimensional, private, and independent types. In a subsequent (but alre-

ady published) paper Goeree and Kushnir (2016), we apply the new techniques to explore

reduced-form implementation for social choice environments with interdependent values. Ot-

her applications, e.g. multi-dimensional types, are possible and are left for future work.

15Our characterization complements Ledyard and Palfrey (1999, 2007) who identify the set of interim effi-
cient mechanisms using Lagrangian methods. See also Kucuksenel (2012) who characterizes interim efficient
mechanisms for settings with interdependent values.
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A. Appendix

Proof of Proposition 1. Necessity of the inequalities follows from the definition of the

support function. Sufficiency also follows easily from our approach by interpreting (8) in

terms of hyperplanes that bound the interim expected probability set. Any boundary point

of the interim expected probability set, i.e. any Q that satisfies Q ·W = SQ(W) for some

W, can be written as Q = ∇SQ(W) at points of differentiability of the support function

from the envelope theorem. Furthermore, if SQ(W) is not differentiable at W then the

subdifferential ∇SQ(W) produces a face on the boundary: for any Q belonging to such a

face we have

(Q−Q′) ·W = SQ(W)− SQ(W) = 0.

Each point of non-differentiability, W, therefore defines a normal vector to the face of the po-

lyhedron, formed by∇SQ(W). For the support function (7) the points of non-differentiability

are weight vectors with several equal entries, and those equal entries are the largest entries

for some profile of types x. Since non-maximum entries does not change the value of the

support function we can consider only weights where these entries are 0. Since the support

function is homogeneous of degree one we can restrict ourselves to weights with only 1 and 0

entries. Then considering all non-trivial W ∈ {0, 1}
∑

iX
i

exhausts all hyperplanes containing

one of the boundary faces of the interim expected probability set. �

Proof of Lemma 2 and Propositions 2. The statements of the lemma and the propo-

sition follow from more general results established in Lemma 3 incorporating also payments

into the support function. �

Proof of Proposition 3. Using Lemmas 1, 2, Proposition 2, and the definition of the

interim support function we have

SDIC(α) = SBIC(α) = SV(α+) = max
{
Ex

(∑
k∈K

qk(x)
∑
i∈I

aikα
i
+(xi)

)
|q is feasible

}
.

This establishes the optimality of the allocation rule in (10). To derive the payments consider
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dominant strategy incentive compatibility constraints16

(vi(xij ,x
−i)− vi(xij−1,x

−i))xij−1 ≤ ti(xij ,x
−i)− ti(xij−1,x

−i) ≤ (vi(xij ,x
−i)− vi(xij−1,x

−i))xij

for j = 2, . . . , N i. Moreover, ex post individual rationality requires that vi(x)xi − ti(x) ≥ 0

for all x ∈ X. Considering the payments binding the upward incentive constraints and the

ex post individually rationality constraint for the lowest type we recursively calculate

ti(x) = vi(x)−
∑
xij <x

i

(
xij+1 − xij

)
vi(xij,x

−i)

for x ∈ X and i ∈ I. This establishes the claim of the proposition. �

Proof of Lemma 3. For clarity, we first outline the main steps of the proof. As a first step,

we derive the support function for the set of feasible interim expected values and payments

(similarly to (6)). As a second step, we state the result from the majorization theory and

prove a useful lemma. Using this lemma we then incorporate Bayesian incentive compatibility

(13) and interim individual rationality constraints into the support function. Finally, as a

third step, we consider the dominant strategy incentive compatibility and ex post individual

rationality constraints and show that these constraints result into the same support function.

We begin by deriving the support function for the set of feasible interim expected values

and payments. Since we do not restrict payments, the feasible set of payments (not yet

taking into account incentive constraints) is the whole space IR
∑

i |Xi|. Hence, the support

function for the feasible set equals Ex

(
δ(Zi(xi) = 0, ∀xi,∀i), where we use the standard

definition of δ-function that equals 0 if its argument is true and +∞ otherwise, and weight

Zi(xi) corresponds to T i(xi) ∈ IR for xi ∈ X i, i = 1, ..., I. Combining this expression with

the result of Lemma 1 we obtain that the support function for the set of feasible interim

expected values and payments equals

SVT(W,Z) = Ex

(
max
k∈K

(
∑
i∈I

aikW
i(xi)) + δ(Zi(xi) = 0, ∀xi,∀i)

)
(A.1)

16We consider only adjacent incentive constraints because utilities satisfy the single-crossing condition.
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where W ∈ IR
∑

i |Xi| and Z ∈ IR
∑

i |Xi|.

We now state an important result from the majorization theory that dates back to Hardy,

Littlewood, and Pólya (1929) (see Marshall et al., 2011).17 Let f1, . . . , fn denote arbitrary

non-negative numbers and consider two increasing sequences σ and ς of length n related with

the majorization order σ �f ς (see the definition in Section 3.3). We then say that sequence

σ f -majorizes ς.

Lemma A1. If σ f -majorizes ς we have

n∑
j= 1

fjg(σj) ≤
n∑

j= 1

fjg(ςj)

for any continuous increasing convex function g : IR→ IR.

We use this result to prove the following powerful lemma that will be useful for incorporating

the incentive constraints into the support function.

Lemma A2. For any sequence σ,

σ+ = arg min
σ�f ς

n∑
j= 1

fjg(ςj) (A.2)

for any continuous increasing convex function g : IR→ IR.

Proof: Let us first construct σ+. For any increasing sequence ς ∈ IRn, let us define function

hl(ς) =
∑l

j=1 fjςj and αl = supσ�f ς
hl(ς), l = 1, .., n, where the supremum is taken only

over increasing sequences. Define now sequence σ+ as (σ+)l = (αl − αl−1)/fl, where α0 = 0.

Clearly, we have (i) σ �f σ+ and (ii) σ+ �f ς for any increasing sequence ς satisfying

σ �f ς. To prove that σ+ is itself increasing we notice that hl(ς)
fl

+ hl−2(ς)

fl−1
≥ ( 1

fl
+ 1

fl−1
)hl−1(ς)

for any increasing sequence ς and l = 2, ..., n. Therefore,

sup
σ�f ς

(hl(ς)
fl

+ hl−2(ς)

fl−1

)
≥ ( 1

fl
+ 1

fl−1
) sup
σ�f ς

hl−1(ς)

where the supremums are taken over only increasing sequences. Notice that the supremum

17This result is also closely related to Karamata’s inequality (see Karamata, 1932).
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of a sum is smaller than the sum of the supremums. After a rearrangement we then obtain

(αl − αl−1)/fl ≥ (αl−1 − αl−2)/fl−1, which proves that σ+ is increasing.

We now consider minimization problem (A.2). We show that, without loss of generality,

we can restrict attention to increasing sequences ς. Consider some ς with ςl > ςk for some

l < k. Then define the sequence ς̃ with elements ς̃l = ςl−ε(ςl−ςk)/fl and ς̃k = ςk+ε(ςl−ςk)/fk
while ς̃j = ςj for j 6= l, k. The sequence ς̃ also satisfies σ �f ς̃. Since g(·) is convex we have

flg(ς̃l) + fkg(ς̃k) ≤ flg(ςl) + fkg(ςk)

and, hence,
∑n

j= 1 fjg(ς̃j) ≤
∑n

j= 1 fjg(ςj). Repeatedly applying this procedure results in a

increasing sequence ς̃ that satisfies σ �f ς̃. But any such sequence is f -majorized by σ+.

Hence, the statement of the lemma follows from Lemma A1. �

Using the above result we now incorporate the Bayesian incentive compatibility and inte-

rim individual rationality constraints into the support function. For convenience we rewrite

these constraints as follows.

T i(xij)− T i(xij−1) ≥ xij−1

(
V i(xij)− V i(xij−1)

)
(A.3)

T i(xij)− T i(xij−1) ≤ xij
(
V i(xij)− V i(xij−1)

)
(A.4)

T i(xij) ≤ xijV
i(xij) (A.5)

The support function of the intersection of non-empty closed convex sets is the convolution

of the support functions of these sets. When some sets are half spaces Bm · V ≤ 0 for

m = 1, . . . ,M the operation of convolution reduces to infΛm≥ 0 S
VT(W −

∑
m ΛmBm) (see

Rockafellar, 1997).

Let us denote parameters corresponding to constraints (A.3), (A.4), and (A.5) as Λi(xij−1),

γi(xij), and µi(xij) respectively. The support function for feasible values and payments sa-

tisfying these constraints can be calculated as

SBIC(W,Z) = inf
Λ,γ,µ≥0

Ex

(
max
k∈K

(
∑
i

aikŴ
i(xi)) + δ(Ẑi(xi) = 0, ∀xi,∀i)

)
(A.6)
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where we denote

Ŵ i(xij) = W i(xij) + 1
f i(xij)

(−xij−1Λi(xij−1) + xijΛ
i(xij) + xijγ

i(xij)− xij+1γ
i(xij+1) + xijµ

i(xij))

Ẑi(xij) = Zi(xij) + 1
f i(xij)

(Λi(xij−1)− Λi(xij)− γi(xij) + γi(xij+1)− µi(xij))

Note that we use convention that Λi(xi0) = Λi(xiN i) = 0 and γi(xi1) = γi(xiN i+1) = 0.

Since agents’ utilities satisfy the single crossing condition the interim individual rationality

constraints are binding only for the lowest type, i.e. µi(xij) = 0 for j = 2, ..., N i. Summing

up constraints Ẑi(xi) = 0 of formula (A.6) over all types xi ∈ X i we then obtain

µi(xi1) =
N i∑
l=1

Zi(xil)f
i(xil)

Similarly, summing up constraints Ẑi(xi) = 0 starting from xij, j = 2, ..., N i we obtain

γi(xij) =
N i∑
l=j

Zi(xil)f
i(xil) + Λi(xij−1)

Note that for non-negative weights Z ∈ IR
∑i |Xi|
+ inequalities µi(xi1) ≥ 0 and γi(xij) ≥ 0

are automatically satisfied. With some abuse of notation we replace (xij+1 − xij)Λi(xij) with

Λi(xij). Substituting the above expressions into formula (A.6) we obtain

SBIC(W,Z) = inf
0≤Λi(xi)

Ex

(
max
k∈K

∑
i∈I

aik
(
W i(xi) +MRZi(xi)− ∆Λi(xi)

f i(xi)

))

Let us now define shifted weights Ŵ i(xi) = W i(xi) + MRZi(xi) − ∆Λi(xi)/f i(xi). It is

straightforward to verify that Wi + MRZi �f i Ŵi for all i ∈ I.18 Therefore, Lemma A2

implies that (Wi +MRZi)+ delivers the minimum to the above expression, which establishes

the claim of the proposition for support function SBIC(W,Z).

As the last step of the proof, we show that the introduction of the dominant strategy

18Note that
∑l

j=1 ∆Λi(xij) = Λi(xil)− Λi(xi0) ≥ 0 for l = 1, . . . , N i with equality for l = N i.
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incentive compatibility constraints

ti(xij,x
−i)− ti(xij−1,x

−i) ≥ xij−1

(
vi(xij,x

−i)− vi(xij−1,x
−i)
)

(A.7)

ti(xij,x
−i)− ti(xij−1,x

−i) ≤ xij
(
vi(xij,x

−i)− vi(xij−1,x
−i)
)
, (A.8)

and ex post individual rationality constraints

ti(xij,x
−i) ≤ xijv

i(xij,x
−i) (A.9)

lead to the same support function. To accomplish this we use the geometric interpretation of

incentive constraints: the support function minimization problem corresponds to the inter-

section of the feasible set with the corresponding incentive constraint. Hence, we can include

the constraints to support function (A.1) for one agent at a time.

We first include only agent 1’s constraints to the support function using arguments similar

to ones used in the derivation of support function SBIC(W,Z). Let us denote parameters

corresponding to constraints (A.7) as λ1(x1
j−1,x

−1) with λ1(x1
0,x

−1) = λ1(x1
N1 ,x−1) = 0, and

∆λ1(x1
j ,x

−1) = λ1(x1
j ,x

−1)− λ1(x1
j−1,x

−1). We then obtain

SDICagent1
(W,Z) = inf

0≤λ1(x)
Ex

(
max
k∈K

( a1
k(W

1(x1) +MRZ1(x1)− ∆λ1(x)
f1(x1)

) +

∑
i 6=1 a

i
k

(
W i(xi) +MRZi(xi)

))

We again consider the shifted weights Ŵ 1(x) = W 1(x1) + MRZ1(x1)− ∆λ1(x)
f1(x1)

. For each x−1

vector Ŵ1(·,x−1) satisfies W1 +MRZ1 �f1 Ŵ1(·,x−1) and the above minimization problem

can be rewritten as

∑
x−1

inf
W1+MRZ1 �f1 Ŵ1(·,x−1)

∑
x1

f 1(x1)g1(Ŵ 1(x1,x−1))

where g1(y) = f−1(x−1) maxk∈K
(
a1
ky +

∑
j 6=1 a

j
k

(
W j(xj) + MRZj(xj)

)
is a convex function

of y. Lemma A2 asserts that Ŵ1(·,x−1) = (W1 + MRZ1)+ for each x−1 solves the above

minimization problem.
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Let us now assume that we have introduced the constraints of i− 1 agents. The minimi-

zation problem that corresponds to the introduction of the constraints of agent i is

∑
x−i

inf
Wi+MRZi �fi Ŵi(·,x−i)

∑
xi

f i(xi)gi(Ŵ i(xi,x−i))

where shifted weights equal Ŵ i(x) = W i(xi) +MRZi(xi)− ∆λi(x)
f i(xi)

and function

gi(y) = f−i(x−i) max
k∈K

(∑
j<i

ajk
(
W j(xj) +MRZj(xj)

)
+

+ aiky +
∑
j>i

ajk
(
W j(xj) +MRZj(xj)

))

is a convex function of y. Lemma A2 again asserts that Ŵi(·,x−i) = (Wi+MRZi)+ for each

x−i solves the above minimization problem. Proceeding in this way for all agents, we finally

obtain that the support function for the feasible interim expected values and payments that

satisfies constraints (A.7-A.9) coincides with SBIC(W,Z). �

Proof of Proposition 4. Vector (V∗,T∗) belongs to ∇SDIC(∇O(V∗,T∗)) if and only if

(see Theorem 23.5 in Rockafellar, 1997)

(V∗,T∗) ∈ argmax((V,T) · ∇O(V∗,T∗) | (V,T) ∈ C)

where C is the set of dominant strategy incentive compatible and ex post individually ratio-

nal agent interim values and payments. This is equivalent to ∇O(V∗,T∗) be tangent to set

C at (V∗,T∗) (see p. 15, Rockafellar, 1997). Finally, Theorem 27.4 in Rochafellar (1997)

establishes that this is equivalent to (V∗,T∗) be a vector where maximum of O(V,T) relative

to C is attained. �
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