
Standing in Line:
Demand for investment opportunities with

exogenous priorities

Philippos Louis∗

November, 2011

Abstract
We look at a model in which agents can invest in a project with a lim-

ited number of available slots. Agents have incomplete information about
the project’s expected payoffs. Based on that, they must decide whether
to invest in the risky project or take a safe outside option. Slots are as-
signed following an exogenous priority order. Low priority agents may
face a winner’s curse: if they choose to invest and obtain a slot in the
project it must be that agents with higher priority choose not to do so. In
equilibrium, only high priority agents choose to invest when their private
information indicates they should. Low priority agents take the outside
option independently of their private information. This feature of equilib-
rium is maintained when we look at variations of the model with priorities
assigned by lottery or determined by a Bernoulli process. We perform
relevant comparative statics and compare equilibrium outcomes of our si-
multaneous action model with the ones from a social learning model. Our
analysis highlights unexplored links between market design features and
the performance of such markets. In particular, agents’ knowledge of the
priority order affects both demand and efficiency. Furthermore, herding
behavior occurs even in the absence of social learning.
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1 Introduction

Markets for goods or investment opportunities are often characterized by limited
supply: opportunities for micro-investments, initial private offerings (IPO’s), of-
fers in the housing market, and job offers in the labor market are some examples.
When this is the case, interdependencies are created among market participants’
actions and outcomes: some agents can obtain access to these opportunities only
if others choose not to. If furthermore actions are motivated by the available
information, interesting strategic effects are observed. The following “down-to-
earth” example should make the nature of these effects clear to the reader.

You come back home after work in the evening and notice an add in the
morning’s paper offering 10 “Clean-your-house Robots” at a very low price to
the first 10 persons to send a free sms to a specific number. At first glance this
offer seems appealing. But before sending the sms you think again: given that
the add was in the morning’s paper and many hours have passed since it was
published, the only chance of winning a robot for a low price is if less than 10
persons have sent the sms already. This would happen only if, unlike yourself,
the vast majority of readers that saw the add during the day thought that this
robot is probably useless. Sending the sms will either get you nothing or if you
get something it will most likely be a big piece of junk taking away precious
space in your house. A winner’s curse!

The possibility of suffering such a winner’s curse (WC) may induce some
agents to ignore their private information and pass on opportunities that come
in limited supply. They do so without actually observing others’ actions. The
simple knowledge that others may have priority over oneself allows for the
necessary inferences. Agents’ behavior in such environments leads to theoretical
considerations that we explore in this paper. We offer insights that are relevant
to market design.

We model this situation as a simultaneous choice game where the WC effect
is internalized at the same time by all decision makers. In particular, our model
considers a set of agents that face the opportunity to invest in a project. There
is a limit to the total number of agents that may invest. If the number of agents
that choose to invest exceeds the number of slots in the project, then these are
assigned according to an exogenous priority order. Agents do not observe the
actions of others. Thus when deciding to invest or not they don’t know whether
agents with a higher priority have invested or not and thus whether there is
any available slot for them. Specifically, one can imagine the situation as one in
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which agents (investors) stand in a line and decide simultaneously whether or
not to invest. The decision is taken without knowing what other agents choose
to do. After decisions are made, the planner (entrepreneur) goes to the first agent
in line and asks him for his decision. She assigns him a slot in the investment if
he chose to invest and moves on to the next in line. The process continues until
all agents have been asked or no more slots are available. Payoffs depend on
whether or not an agent is assigned an investment slot. They further depend on
an unknown state of nature which determines the returns of the investment. In
a “good” state investing gives a high payoff, while in a “bad” state it is better not
to invest. Each agent also has some private information concerning the state.
This comes in the form of a binary noisy signal which points to a good or a bad
state.

The main ingredients for our model are incomplete information, a common
value and the limited supply of investment opportunities. The latter makes
other investors’ decisions relevant for everybody else, or, in particular, for those
that follow in the line. Without limited supply, the problem becomes a sum
of individual decision problems, independent of each other, since inferences
about others’ behavior are unnecessary. Only when supply is limited can one
argue that being able to invest means that others with a higher priority have
not done so. Incompleteness of information and the common value turn this
argument to the WC argument described above. Awareness of the WC drives
equilibrium behavior in our model: individuals in the front of the line decide
according to their private information; the ones that stand further back, ignore
their private information and simply do not invest. This is because for the
ones standing in front, whether they get a slot does not depend on what others
do. The ones in the back can only obtain a slot if the ones in front choose
not to invest. This restriction of the market allows them to make equilibrium
inferences about the private information of the agents that stand in front of them
in the line. If several agents in front choose not to invest it must be that their
private information points to the “bad” state. In that case it might be better not
to invest, even if one’s own private signal points to a good state. Thus individual
behavior in equilibrium depends on one’s position in the line.

Once we understand individual behavior in our model we can see how other
factors may affect the equilibrium in such a market. Anything that can affect the
strength of the WC can have an impact. For instance the number of available
slots: the WC argument’s strength is different in the case of only one available
slot compared to the case of 50 slots. For an agent in position 51 obtaining
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the single available slot is almost certainly a consequence of the investment
opportunity being bad. In the second case, even when the state is good, it is
enough for a single agent of the 50 preceding in the line to get a wrong signal for
a slot to be available. Another interesting issue is the knowledge an individual
has about his position in the line. This may not always be perfect and it has an
impact on the number of agents that choose to play informatively (follow their
signal) or herd (ignore their signal).

We do not assume any complementarities among investors’ actions. Whether
others invest or not does not affect the quality of the investment. It may sim-
ply reveal their private information. Thus, we have that factors such as the
knowledge about the priority order and the size of the supply of investment
opportunities, both unrelated to the quality of the investment and the investor’s
payoff from it, become determinant for the demand for the investment slots.

In the base-line model, we assume that agents know the exogenous priority
order, that is each agent knows exactly his position in line. After a detailed
analysis of this case we consider an alternative scenario where priorities are de-
termined by a lottery. The realization of this lottery takes place after investment
decisions are made. This scenario represents the other extreme: agents have
no knowledge of where they stand in line. We also consider an intermediate
case with a Bernoulli arrival process that generates a random assignment. In
each period an agent arrives with a given probability. Each agent is aware of
this process but does not know how many other agents have arrived before
him. Still,the date of arrival gives him some idea about the distribution of this
number that allows him to build an expectation of the probability of getting a
slot.

We fully characterize equilibrium behavior in our model. When the posi-
tion in the line is known, agents in the front choose whether or not to invest
according to their private information. The ones further back ignore their pri-
vate information and choose not to invest. Equilibrium in the Bernoulli arrival
process model shares the same features. When the priority is set by a lottery,
all agents choose not to invest with positive probability even when their private
information indicates they should do so. Increasing the available slots affects
agents differently, depending on their position in line. When an agent’s position
in line is greater than the available slots, but close to that, the increase in the
number of slots reduces the WC effect and makes investing more attractive. The
contrary is true for agents further back in line. With high uncertainty about
priority the final direction of the effect depends on the specific parameters.
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1.1 Literature Review

Rock (1986) (30) studies the market for IPO’s which is an example of a market
with incomplete information and limited supply. He uses a “lemons market”
type of model to explain the underpricing of initial public offerings (IPO’s). In
his model uninformed investors compete with informed ones. The first face a
winner’s curse since they know they can invest only if informed investors con-
sider the offering price too high with respect to the expected market price. The
issuer must therefore underprice in order to attract the uninformed investors. A
significant body of empirical literature has followed, trying to verify this expla-
nation of IPO underpricing (see Ljungvist, 2007 (22), for a survey). In our model
we obtain the winner’s curse is of a different nature. There is no asymmetry
in information between agents. We show that it is the market design features
that determine the strength of the curse. Our model does not share the aim of
explaining IPO underpricing. Still, our results suggest that if such underpricing
is due to a winner’s curse effect, any empirical strategy trying to identify such
effect must take into account the institutional settings of the market studied and
possibly take advantage of any variation in these.

The paper by Thomas (2011) (33) shares with us the interest in studying
markets with limited availability of different goods and incomplete information.
However, there are several differences both in the approach and the kind of
results obtained. Her paper examines the situation in which different agents
acquire information about different alternatives through experimentation. The
fact that some of these are limited in supply gives rise to strategic interactions
when agents decide on the duration of experimentation. Still, agents here do not
learn from one another, whether by observation or in equilibrium. The strategic
incentives for choosing one alternative are of a preemptive nature. In our
case it is equilibrium beliefs that push an agent to choose something contrary
to his information. Furthermore, in Thomas’ paper the priority over choices
is endogenous. Agents decide when to stop experimenting and grabbing an
option. We focus on exogenous priorities.

Given that the marketplace we study does not involve prices, the literature
on matching markets is a natural place to look for parallelisms. One approach to
matching markets looks at specific matching games. Perhaps the first attempt of
such an approach has been the work of Becker (1973) (6). Within this literature
and more recently, some papers have considered, as we do, environments with
incomplete information and a common value. In particular, a paper that is
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closer to our work and that is the first to identify the type of winner’s curse
that influences behavior in our model is the one by Lee (2009) (20). He looks at
the decentralized college admissions market and finds a rationalization for the
“early admissions” system on the basis of this curse. We focus on a centralized
market and see how the use of a matching mechanism can create the curse. This
induces herding on the part of some participants in order to avoid it. Another
example is Chade (2006) (9). He looks at a decentralized marriage market and
detects what he calls the acceptance curse. A participant can infer information
by the event of being accepted by a partner at a given point in time. This
acceptance may mean that one’s value is higher than what one thought about
oneself. This is different from the curse in our model where the information
generating the curse comes from the equilibrium play of competing agents and
concerns the value of the chosen alternative, and not one’s own value.

Generalized matching markets with incomplete information were first stud-
ied by Roth (1989) (31), and the literature remains active (see for example Ehlers
and Massó, 2007 (13); ,Pais and Pinter, 2008 (29)). Incompleteness in these exam-
ples concerns knowledge about others’ preferences on the part of a participant
in the matching market. This literature is interested in understanding the stabil-
ity and strategy-proofness of matching mechanisms. Chakraborty et al. (2010)
(10), follows this line of research and introduces the additional element of value
interdependency among participants.

We study how in the presence of incomplete information and a common
value agents can make inferences about others’ information in equilibrium and
the effect of such strategic considerations on the market’s performance. In our
model it is the assignment mechanism that is used to resolve the problem of
limited supply that allows for such inferences. Milgrom and Weber (1982) (25),
McAfee and McMillan (1987) (24) study similar effects that arise in auctions.
Outside the realm of markets, Austen-Smith and Banks (1996) (4) and Fedder-
sen and Pesendorfer (1997)(15) first studied the implications of such strategic
considerations in voting and collective decision making.

The idea that rational individuals may take decisions ignoring their private
information is not new. Strategic voting was just mentioned and deliberation
where participants may have reputational concerns as in Ottaviani & Sørensen
(2001) (28) is another example. But probably the most prominent case is the
one of social learning and informational cascades in markets (Banerjee, 1992 (5);
Bikhchandani et al., 1992 (7)). This literature studies the case where individuals
with imperfect information and a common value move sequentially and can
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observe the actions of some or all predecessors before making a decision. Gale
and Kariv (2003) (16) and Acemoglu et al. (2008) (1), study the case where agents
learn through their social network. An informational cascade starts when an
individual ignores his private information because the information inferred
by observing others’ actions points to the other direction. Since his action
conveys no new information, all individuals following him act in the same way.
Herding behavior does not occur if actions of others were not observed. In
Callander and Hörner (2009)(8), for instance, the exact actions of others’ are not
observed, but only the aggregate choices. Herding in these cases ceases to be an
equilibrium feature. If actions are taken simultaneously agents should follow
their information. But not if there is limited capacity. This is what happens
in our paper and what builds a bridge with the informational cascade model.
The general environment is the same but in our case actions are simultaneous
and one of the two choices has limited capacity. For a general overview of the
literature on social learning in markets the reader should look at the books by
Chamley (2004) (11) and Vives (2010) (34).

Agents in our model are fully rational. It is not clear whether this is the
right assumption in such a model, since different approaches find experimental
and empirical evidence point to different directions. On the one hand, there is
evidence that individuals are sophisticated enough to infer information from
others’ actions triggering informational cascades (Anderson and Holt, 1997 (3);
Hung and Plott, 2001 (18); Alevy et al., 2007 (2); Goeree et al., 2007 (17)). On the
other hand, evidence points to the opposite direction with respect to sophisti-
cation and its relation to the winner’s curse. Both in the lab and the real world
the majority of individuals fail to take the WC into account (Kagel and Levin,
1986(19); Lind and Plott, 1991 (21)). Our simple model provides a framework in
which both situations can be tested. We use it in a related paper ( Louis, 2011(23))
to test whether the same individuals are sophisticated enough to follow herds,
but not so sophisticated as to avoid the winner’s curse. This type of behavior is
not predicted by the salient theories of play for games with incomplete informa-
tion and a common value, such as “level-k reasoning” (Stahl and Wilson, 1995
(32); Nagel, 1995 (27); Crawford and Irriberi, 2007 (12) or “cursed equilibrium”
(Eyster and Rabin, 2005 (14)).
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2 The model

Agents. There are n ≥ 2 agents that must choose whether or not to invest in
an investment opportunity presented to them. Let xi ∈ X = {I,O} denote the
choice of agent i ∈ N = {1, ...,n}. There are only k < n available slots in the
investment. This means, it is not possible for all agents to invest. Whether an
agent is assigned to one of the available slots is determined by a mechanism
f : {I,O}n → {I,O}n. The assignment follows an exogenous priority order. An
agents index denotes the agent’s priority: agent i has priority over agent j if
i < j. Let fi : {I,O} × {I,O}N−1

→ {I,O} denote the outcome of the assignment for
agent i given his and others’ choices. The following holds:

fi(xi = I, x−i) =

I i f
∣∣∣{x j = I , j < i}

∣∣∣ < k

O , otherwise

fi(xi = O, x−i) = O

Information. The state of nature is θ ∈ Θ = {G,B}. Agents have a uniform
common prior about the state of nature. This means that the a priori probability
of θ taking either value is 1

2 . 1 Before making a choice, each agent receives a
noisy private signal si ∈ S = {g, b} about the state of nature. Private signals are
independent conditional on the state of nature. The following table indicates
the probability of the signal taking either value conditional on the state θ.

θ

G B

si
g qG 1 − qB

b 1 − qG qB

Payoffs: An agent’s utility function has the following form:

ui
(

f (xi, x−i
)
, θ) =


1, f (xi, x−i) = I and θ = G

0, f (xi, x−i) = I and θ = B

γ, f (xi, x−i) = O

with 0 < γ < 1. In other words, the payoff of an agent that obtains a slot in the
investment is normalized to 1 if the state is “good” and 0 if the state is “bad”.

1Considering non-uniform priors is also possible. Since it does not affect results in a partic-
ularly interesting way we choose not to do so, in favor of expositional clarity.
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When an agent chooses not to invest or does not obtain a slot, he gets γ ∈ (0, 1).
We can view this parameter as the value of a safe outside option. In the

case of micro-investors it could be the return one gets by keeping the money
in the bank. This being the same for agents that directly choose not to invest
and for the ones not obtaining a slot implies that there is no cost from choosing
to invest. This may not be true in some occasions. For instance, participating
in an IPO may involve non-negligible transaction costs that are independent of
whether or not one obtains shares of the company in the end. Adding cost for
investing in our model is possible and mathematically tractable. Nevertheless, it
will become clear further on that including such costs here would only reinforce
our results about agents behavior in such a market. Hence, not including them
makes both our results stronger and the exposition cleaner.

Coming back to the image of agents standing in a line, one can view the
model we have described in the following way. An agent’s index denotes his
position in the line. Given the limited availability of investment slots, deciding
to invest does not guarantee the agent a slot. The assignment mechanism works
in a way that an agent that chooses to invest obtains a slot only if less than k
agents standing in front of him, to invest. If an agent’s position (index) is less
than k than obtaining a slot only depends on his own decision.

In real markets, one’s position in the line might depend on one’s time of
arrival when a the “first-come, first-served” method is used. Or it might depend
on some priority assigned by the seller or planner. Consider the case of an
entrepreneur seeking a limited number of micro-investors for his project. He
might want to give priority to close friends and family over other investors.
In a market for “public protection” housing there might be social criteria that
determine the priority of potential buyers.

For the moment we assume that each agent knows exactly his position in
the line. This assumption can be strong and we later relax it in different ways.
Still, it is useful to start off this way for two reasons. On one hand it allows for
a better understanding of the forces that determine equilibrium behavior. On
the other hand it is an important building block in the calculation of equilibria
in the other environments we explore later on.

As was mentioned in the introduction, agents decide whether or not to invest
without observing what others choose to do. There is neither communication
among agents nor the possibility for social learning by observing others’ actions.
In some environments this makes sense. For instance in IPO’s, investors must
decide whether or not to participate in a simultaneous fashion. The stronger
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argument for this assumption will be clear once we present our results. As we
shall see, the equilibrium behavior of agents in our model shares characteristics
with the behavior of agents in models of social learning. In particular the fact
that some agents ignore their private information and choose a particular action.
By obtaining these results with agents acting simultaneously we show how this
behavior can emerge in such an environment and what factors drive it.

We will further assume that the following condition holds:

Condition 1.
1 − qG

qB
<

γ

1 − γ
<

qG

1 − qB
. (1)

This condition makes the problem interesting. It makes sure that when an
agent has no further information than his own private signal, his best response
depends on the signal’s content. A signal si = g indicates that investing is a
“good” choice. A signal si = b indicates it is better not to invest. As will become
clear further on, were this not true, all agents would choose to invest (for low γ)
or not to invest (for high γ) independently of their signal.

Up to now we have defined a set of agents that can take actions out of a par-
ticular set and have a particular type which is given by their private information.
Their actions lead to payoffs that depend on the state of nature and on the ac-
tions of other agents. The environment is further defined by the available slots,
the value of the outside option and the precision of the private information. All
these define a bayesian game G = 〈N,Θ, {X,S,ui, }i∈N, k, γ, qG, qB〉. The relevant
concept that we use to solve such a game is the one of Bayesian Nash equilib-
rium. In our specific context this equilibrium refers to a strategy for each agent
that describes the action the agent takes depending on his private information:
x∗i : S→ X. The strategy must be such that it maximizes his expected payoff from
the game given all other players’ strategies: E[ui(x∗i , x

∗

−i)] ≥ E[ui(x
′

i , x
∗

−i)],∀i ∈ N,
and given his beliefs about others’ private information.

3 Equilibrium behavior

As was mentioned, agents in our model can neither communicate or observe
each others’ actions. If there was no limit in the number of available slots, or
simply k ≥ n, then each agent would obtain a slot if he chose to invest. Our
model would reduce to a sum of n individual decision problems in which each
agent would choose according to his signal. Restricting the supply of slots
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forces agents to make strategic considerations when making their decision. In
particular, agents standing at positions beyond k realize that they can obtain a
slot only if less than k of the preceding agents choose not to invest.

We now use the simplest possible example to demonstrate how such strategic
considerations affect agents’ behavior in such a game.

Example 1. In this example we consider only two agents: i ∈ N = {1, 2}. The
capacity limit is the lowest possible: k = 1. Let us also assume that qG = 1.
Condition 1 then reduces to qB > 1 − 1−γ

γ and we assume this holds. Notice
that with this choice of parameters for the signal accuracy, if a player observes
a signal si = b he knows that the state of nature is θ = B with probability 1. This
is because there is zero probability of obtaining such a signal when the state is
θ = G. Agent 1 stands in line in front of agent 2, or in other words, he has got
priority over agent 2. This means that agent 2 can obtain the slot only if agent 1
chooses not to invest. For agent 1 the outcome depends only on his own choices.

First consider agent 1. He is the first in line. Whether he obtains a slot
depends only on his choice. Since Condition 1 holds, his decision depends on
his private signal. If s1 = g he chooses to invest: x1(g)∗ = I. If s1 = b, then he
chooses not to invest: x∗1(b) = O.

Agent 2 is second in line. He chooses simultaneously with agent 1. Therefore,
even if he chooses to invest he does not know whether or not he will obtain the
single slot. This depends on agent 1’s choice. If agent 1 chooses not to invest
then agent 2 can obtain the slot if he chooses to invest. If agent 1 chooses to
invest, then there is no slot available for agent 2 and he gets the outside option.
Still, he knows that agent 1’s decision depends on the private signal s1. He also
knows that his own decision only matters when agent 1 chooses not to invest.
He must therefore decide conditioning on this event. But agent 1 chooses not to
invest only when he observes s1 = b and this is only possible when θ = B. Thus
agent 2 knows that his decision matters only when the state is “bad” and in that
case he should not invest. Notice that this does not depend on s2, the signal
observed by agent 2. Therefore, agent 2 decides not to invest, independently of
his private signal: x∗2(s2) = O.

The two agents in this example end up playing very distinct strategies in
equilibrium. The first agent follows his signal, while the second agent ignores
it and chooses not to invest. From now on we shall refer to the strategy of agent

11



1 as informative play and to to the strategy of agent 2 as herding.

Informative play: The strategy in which an agent i chooses according to his sig-
nal:

xi(g) = I , xi(b) = O

Contingent belief herding:2 The strategy in which an agent ignores his private signal
and does not invest:

xi(g) = xi(b) = O

First of all one should note that the reasoning that leads agent 2 to choose
such a strategy is based entirely on the fact that the number of slots is limited.
Were this not the case it would not be possible to make any inferences about
agent 1’s actions and information.

The second point to notice is that the behavior of both agents would be the
same in equilibrium if there were more agents standing behind them in the line.
What is more, it is easy to see that any agent standing behind agent 2 would also
herd in equilibrium. This is because, since agent 2 is herding he does not affect
any other agents. Thus the hypothetical agent 3 faces the exact same situation
as agent 2 and also chooses to herd. The same would be true for any other agent
standing in line after them.

This simple example demonstrates the main feature of equilibrium in such
games. Agents standing in the first positions of the line play informatively.
After some point in the line agents switch their equilibrium strategy to herding.
The point where the switch takes place lies at a position grater than the number
of available slots. The following proposition formalizes this result.

The result of the example is generalized in the following proposition.

Proposition 1. Consider a game G = 〈N,Θ, {Xi,Si,ui, }i∈N, k, γ, qG, qB〉 and assume
Condition 1 holds. There is a unique Bayesian Nash equilibrium in this game. In
equilibrium, all agents with index i < m̂(k, γ, qG, qB) play informatively. All others herd

2We use the notion of contingent beleive herding as opposed to public belief herding. The latter is
the type of herding one finds in models of social learning such as Bikhchandani et al., 1992 (7).
There agents share a common public belief and they may herd on that. Here, agents form beliefs
that are contingent on equilibrium play and some may herd on these beliefs. It is still herding
in the sense that an outside observer still observes a number of agents taking the same action
(a herd), to a degree that is not justified by agents simply following their private information.
Unlike the case of social learning, here we have no informational cascade. The reader should
keep in mind that when mentioning ’herding’ in the rest of the paper we refer to ’contingent
belief herding’.
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and choose xi = O, independently of their signal. Furthermore, m̂(k, qA, qB) > k.

Proof. All proofs can be found in the appendix. �

What drives this result is the same as in the two-agent example. Agents with
an index higher than k know that they can obtain a payoff higher than their
outside option only if the state is “good” and less than k agents of the ones in
front of them choose to invest. But given that agents in the front of the line
play informatively, conditioning on the event that less than k agents choose to
invest (which means that less than k agents received a signal si = g) reduces
the probability of the state being good. There is an increased probability of
obtaining a slot in the “bad” state. This is the winner’s curse effect. This effect
becomes stronger the further back one stands in the line. Therefore, eventually
agents switch away from informative play as we move towards the back, in
order to avoid the winner’s curse.

One important feature of this result is that a significant number of agents
never choose to invest. This means that with positive probability less than k
agents invest and obtain a slot, even when the state of nature is “good”. This
ex-post inefficiency is reminiscent of the same inefficiency encountered in the
social learning model. We study that further on when we make a comparison
between the two different models: our own and a social learning model, where
agents decide sequentially, with a limited availability of investment slots.

For now we must point out that the equilibrium is efficient. The number
of agents playing informatively maximizes the sum expected payoffs. This is
stated in the following proposition.

Proposition 2. Given k, γ, qG, qB that satisfy condition 1, the unique equilibrium strat-
egy profile of a game G = 〈N,Θ, {Xi,Si,ui, }i∈N, k, γ, qG, qB〉 with known priorities, for
any N, is ex ante efficient. Another pure strategy profile of the game is ex ante efficient
if and only if the same number of agents play informatively as in the equilibrium profile.

The reason why this holds is simple. The number of agents playing infor-
matively is such that any agent that plays informatively has an expected payoff

higher than what he obtains by herding, which is the outside option. If less
agents play informatively, then they are forgoing the possibility of a higher ex-
pected payoff. If more agents play informatively, then some have an expected
payoff smaller that their outside option. Both these cases result in a smaller sum
of expected utilities and are therefore inefficient.
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Another feature of the equilibrium to note is the sorting of agents and strate-
gies. Low index agents play informatively while high index agents herd. This
means that what to an external observer might seem as some sort of correlation
between priorities and preferences or information is simply rational equilibrium
behavior of agents with identical preferences.

3.1 Comparative statics.

To get a better grasp of how equilibrium behavior depends on the various
parameters of the model we perform comparative statics. It is important to
understand what exactly is “moving” when we change one of the parameters.
For that one has to understand the mechanism that underlies proposition 1.

As long as Condition 1 holds, agents that receive a signal si = b never choose
to invest. The ones that receive si = g calculate their expected payoff from
investing, taking into account the fact that to obtain a slot it must be that less
than k agents in front of them invest. They compare this to the payoff from
the outside option γ. Whether an agent plays informatively or herds depends
on this comparison. Thus any effect of a change in parameters on equilibrium
behavior must come through the effect the change has on the expected payoff

from investing after observing si = g. This is given by the following function in
which we assume all agents in front of i play informatively:

E[ui(I, g)] =Pr(G|g)


payo f f . when a slot is f ree︷                               ︸︸                               ︷

Pr
(∣∣∣{s j = g, j ≤ k}

∣∣∣ < k |G
)
· 1 +

payo f f when no f ree slot︷                              ︸︸                              ︷
Pr

(∣∣∣{s j = g, j ≤ k}
∣∣∣ ≥ k |G

)
γ

︸                                                                           ︷︷                                                                           ︸
payo f f when state is “good′′

+ Pr(B|g)


payo f f . when a slot is f ree: WC︷                               ︸︸                               ︷

Pr
(∣∣∣{s j = g, j ≤ k}

∣∣∣ < k |B
)
· 0 +

payo f f when no f ree slot︷                              ︸︸                              ︷
Pr

(∣∣∣{s j = g, j ≤ k}
∣∣∣ ≥ k |B

)
γ

︸                                                                          ︷︷                                                                          ︸
payo f f when state is “bad′′

(2)

The first term of the second bracket in the RHS represents the winner’s curse. It
is the payoff an agent receives when investing and obtaining a slot when the state
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is “bad”. The number of agents that receive a particular signal given the state
follows a binomial distribution. Hence the probability of less than k agents to
have received a signal s j = g given the state, is given from the cumulative density
function (cdf) of the binomial distribution with the appropriate parameters. Let
F(m,G)(k) represent the cdf of Bin(m, qg) and F(m,B)(k) represent the cdf of Bin(m, 1−
qB). Thus we have:

E[ui(I, g)] =
qG

qG + 1 − qB

[
F(i−1,G)(k − 1) +

(
1 − F(i−1,G)(k − 1)

)
γ
]

+
1 − qB

qG + 1 − qB

(
1 − F(i−1,B)(k − 1)

)
γ (3)

The equilibrium behavior of a particular agent is determined by whether this
expression is above or below γ, the value of the outside option. When it is above,
the agent invests. When it is below he herds.

3.1.1 The value of the outside option.

The value of expression 3 is increasing in γ. Still, the sum of the factors of γ
is lower than 1. This means that as we increase γ the value of E[ui(I, g)] also
increases but at a slower rate. So let us consider the last agent in line that plays
informatively for some low γ. This means that for him E[ui(I, g)] > γ. Now
suppose we increase the value of the outside option. While both sides of the
inequality increase, the RHS does so faster, so eventually it will switch. This
agent will change his strategy from informative play to herding.

Here the value of the outside option is given relative to the possible payoffs
of the investment that are normalized. These values would normally depend
on whoever tries to attract the investors. We do not model such an agent in
any form here. Still, what we learn here is that an entrepreneur trying to attract
investors, can do so by making the investment more attractive relative to the
outside option. This is assuming she has no other information that can be
inferred by her choices. This result is similar to the one obtained in Rock (1986)
(30), where he concludes that the seller in an IPO might want to underprice in
order to attract the uninformed investors. We get a similar conclusion, but here
we do not assume any asymmetry in information among investors.
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3.1.2 The number of available slots.

The number of available slots is a parameter which a market designer can
control to a significant extent in many markets. For instance an entrepreneur
might decide the maximum number of investors she wants to take on board her
project, or a department may decide, within limits, on the number of available
openings.

The effect on equilibrium from increasing the number of slots is clear cut:
more agents play informatively.

Proposition 3. Consider a game G = 〈N,Θ, {Xi,Si,ui, }i∈N, k, γ, qG, qB〉 and assume
Condition 1 holds. Then m̂(k, qA, qB) is increasing in k.

To understand why this happens one must understand that it is the limited
supply of slots that gives rise to the winner’s curse. Obtaining a slot when the
supply is limited happens only when “enough” preceding agents choose not to
invest. When k is low, “enough” represents a large number of agents. When k is
high, “enough” represents a small number of agents and thus a weaker winner’s
curse effect.

We must notice here that we obtain this clear-cut result for the case where
priorities are known. For the cases we study further on with priority uncertainty
this result may not hold, depending on the other parameters.

Although the number of agents choosing to invest increases with k it is
interesting to see the rate of this increase. The following graphs in figure 1 show
for two different levels of signal accuracy the ratio of the expected number of
agents that choose to invest in equilibrium, over the number of available slots.
When this ratio is above one, we expect excess demand. When the ratio is below
1 we expect excess supply. We observe that excess demand only occurs for
low levels of k. The ratio drops off fast. This happens because of the effect of
increasing k on the winner’s curse. How it evolves further depends on the the
other parameters. Here we see that for low levels of signal accuracy the ratio
tends to increase again, while for low levels of accuracy it continues decreasing.
An explanation for that is that when accuracy is high the winner’s curse effect
remains persistent. More agents play informatively because more agents have
an index below k but for agents with a higher index the effect is still there.
When accuracy is low, the increase in k has a strong attenuating effect on the
winner’s curse. Therefore, not only agents with am index below k switch, but
also a significant number of agents with a higher index. In both graphs there is
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(a) low accuracy

      50 100 150 200

1.6

0

1

k

Ra
tio

 o
f E

xp
ec

te
d 

nu
m

be
r o

f a
ge

nt
s 

in
ve

st
in

g 
ov

er
 k

qG=.85 qB=.85 γ = 0.5
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Figure 1: Examples of how the demand for investment evolves with k

a drop of the ratio in the end. This is due to the fact that already all agents are
playing informatively after that point. Hence, increasing k has no further effect
on equilibrium.

3.1.3 The accuracy of information.

The accuracy of information in our model is represented by the parameters qG

and qB. The higher these parameters are, the stronger is the signal the agents
receive. As we explained, when an agent decides in equilibrium he also takes
into account the signals of others that stand in front of him in the line. So suppose
an agent receives a “good” signal. The higher the accuracy of the signal, the
stronger the indication that the state is actually “good”. But in equilibrium
this agent may obtain a slot only if enough of the preceding agents choose not
to invest. These agents must have received a “bad” signal. The higher the
accuracy of the signals the stronger an indication it is that the state is actually
“bad”. Thus, the increase in accuracy has a positive effect through one’s own
signal but a negative effect through the signals of preceding agents.

Which effect dominates? This depends on where an agent stands in line. For
equilibrium what matters is agent m̂. If a change in the accuracy has a positive
effect in his expected payoff, he (and maybe more agents) may switch from
herding to informative play. If the effect is negative, then it is possible that some
agents that played informatively, switch to herding. This would give a new m̂
with a lower index.
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Changes in qG. An increase in qG means that it is more likely to receive a signal
si = g when the state is “good”. By bayesian logic it also means that having
received a such a signal it is more likely that the state is “good” . Looking at
expression 3 we can see how this creates the two opposite effects described.
On one hand, the factor qG

qG+1−qB
increases while the complementary factor 1−qB

qG+1−qB

decreases. This represents the positive effect from one’s own private signal si = g
becoming stronger. At the same time though, the term in the brackets decreases,
since F(i−1,G)(k − 1) is decreasing in qG. This represents the effect of the “bad”
signals of preceding agents becoming stronger.

The graph in figure 2 shows an example of how changing qG affects the
shape of the function in expression 3. The points in the rectangle are the ones
corresponding to the threshold agent m̂.
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Figure 2: Comparative static with respect to qG.

Changes in qB. An increase in qB means that it is more likely to receive a signal
si = b when the state is “bad”. Again, by Bayesian logic it follows that having
received a signal si = g it is more likely that the state is “good”. In expression 3
we can see the two opposite effects. The two fractions move in the same direction
as before. Now it is in the term in the last parenthesis where we observe the
opposite negative effect. This term decreases.

The graph in figure 3 shows an example of how changing qB affects the
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shape of the function in expression 3. The points in the rectangle are the ones
corresponding to the threshold agent m̂. Note here that m̂ moves to the opposite
direction than when we were changing qG.
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Figure 3: Comparative static with respect to qB.

4 Simultaneous play vs. Social learning.

In our model agents do not learn from each other. There is no communication
between them, nor is it possible to observe each others’ actions. Yet, the behav-
ior we observe in equilibrium resembles the one found in models with social
learning in which agents take actions sequentially and can observe what others
do (Banerjee, 1992 (5); Bikhchandani et al, 1992 (7)). In this section we compare
behavior in our model with the one in such a model. The social learning we
consider follows the exact same setup as our model with one difference: agents
take actions sequentially and observe the actions of the agents standing in front
of them in the line. This is equivalent to adding a limited number of slots for
one of the alternatives in the binary model in Bikhchandani et al. (1992). In the
sequential model, the limited number of slots does not affect strategic behavior.
Since agents observe the actions of others they can accurately infer their type
and incorporate that information into their own decision making. If the slots
are filled the game ends and remaining agents obtain their outside option. The
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interesting equilibrium feature in such a model is the possibility of an informa-
tional cascade emerging. After observing a particular sequence of actions an
agent’s beliefs about the state may be such that his private signal does not make
a difference about the optimal action. In this case the agent herds (ignores his
private information) and so do all agents after him in the line. Informational
cascades can go either way with agents herding choosing to invest or not to do
so. There is also the possibility of agents herding on the wrong decision.

The equilibrium outcome in the two models can be very similar. For instance,
in the two agent model described in example 1, allowing the second agent to
observe the action of the first agent, makes no difference in the outcome observed
in equilibrium. The first agent may invest or not, depending on his signal, while
the second agent always obtains his outside option. This happens because the
equilibrium inferences made by the second agent in the simultaneous game
mirror exactly the inferences he makes in the sequential game.

Such similarities persist in games with more players and different levels of k
when the value of the outside option is low. Outcomes change when this value
is high. First we explain the intuition behind this phenomenon and then use
numerical simulations to demonstrate the result.

There are two types of mistakes agents can make: not investing when the
state is “good” or investing when the state is “bad”. The first type is costly when
γ is low. That is when the outside option gives a low payoff compared to that of
a good investment. The second type is costly when γ is high.

In the sequential model, informational cascades serve as a mechanism to
protect agents from these mistakes. By observing others, agents are able to make
decisions based on more information than only their private signal. The “cost”
of such a defense mechanism is that sometimes it produces “bad cascades”, in
which agents all herd on the wrong decision. Still, the probability of such a
cascade is relatively low.

In the simultaneous model, there is again a low risk of committing the first
mistake. In equilibrium a large number of agents plays informatively. For the
ones that herd, choosing not to invest makes a difference only if the agents
playing informatively leave free slots. But this rarely happens when the state is
“good”. Concerning the second type of mistake, investing in a “bad” state, the
agents in the back of the line that herd are protected. Still, agents in the front
of the line must rely solely on their private information and it is possible for
them to make such a mistake. More so than agents in the sequential model that
decide based not only on a single private signal.
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So it turns out that what causes a difference in the outcome of the two
models is the degree to which agents commit the mistake of investing in a “bad”
project. When γ is low, such a mistake is not very costly and furthermore, “bad
cascades” in that direction are not very likely in the sequential model. Therefore
the outcomes of the models do not vary significantly. When γ is high, such
a mistake becomes costly. “Good cascades” protect agents in the sequential
model. In the simultaneous model agents commit this mistake more often.

From an efficiency point of view, when γ is high, the sequential game pro-
duces better outcomes. For a low γ outcomes do not differ much. In the
simulations we perform, efficiency is slightly better in the simultaneous game
for a low k and slightly worst for a higher k. Still, differences are of a very small
magnitude.

From the point of view of demand, when γ is high there is a higher demand
for investment in the simultaneous game, except for very low levels of k. For
low γ again demand is higher in the sequential game, but only for very low
levels of k is the difference significant.

The following graphs show the results of Monte-Carlo simulations per-
formed in order to compare the outcomes of the two models. For these sim-
ulations we produce a vector of private signals. We calculate the equilibrium
corresponding to this vector for each model for different levels of k. We repeat
the process 10,000 times and take averages of our results. The parameters used
in the simulations presented here are n = 100 and qG = qB = q = 0.85. We
do the calculations for three different levels of the value of the outside option:
γ ∈ {.4, .5, .6}. The first graph shows the difference in the total welfare (nor-
malized to lie between zero and one) between the two models. Positive values
indicate a higher welfare in the simultaneous model. The second graph shows
the difference in demand for investment between the two models. Demand here
is calculated as the fraction of slots filled in equilibrium. Positive values indicate
a higher demand in the simultaneous model.

One can see in the graphs how the differences between the two models
become pronounced when γ is high. The kink on the right side of both graphs
is due to the fact that once k is high enough all agents play informatively in our
model. Therefore increasing k further does not change the equilibrium behavior
of agents. Still, it affects the normalized values of welfare and demand.
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Figure 4: Difference in welfare in the two models.

1000    10 30 40 50 60 70 80 90

0.1

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

k

D
iff

er
en

ce
 in

 D
em

an
d:

 s
im

-s
eq

γ = .6
γ = .5

γ = .4

q = .85

n = 100

Figure 5: Difference in demand in the two models.

5 Priorities assigned by a lottery.

Up to this point we considered that each agent knew exactly his position in line.
We now relax this assumption. In this section we consider the case where a
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lottery is used to determine the position in line of each agent. The lottery takes
place after each agent makes his decision about whether or not to invest.

It makes sense to consider such a variation to our model for two reasons.
First, it comes closer to some real life situations where such a mechanism is
used, like some IPO’s. In general, one could consider this as the other end of the
spectrum of possibilities about what agents know about their priority. In reality,
different cases might lie anywhere between the two extremes.

The second reason to consider this variation is a theoretical motivation with
empirical implications. Notice that now all agents are ex-ante identical. Once
they receive their private signal they are differentiated, but even at that point, all
agents who observe the same private signal have exactly the same information
and available choices. As we shall see, for some range of parameters there exists
a symmetric equilibrium in which agents herd with a positive probability. This
result highlights the fact that it is the institutional design of the market and not
the heterogeneity of agents that give rise to the winner’s curse effect. This is
important for anybody looking at market data trying to identify such an effect.
For instance in the “IPO underpricing” literature in finance the WC effect was
described by Rock (1986) (30) but attributed to the existence of differentially
informed agents. Empirical strategies trying to verify the theory relied on the
existence of such heterogeneous groups. Our result suggests that the WC effect
should be present even without differences in information between groups of
agents.

From a technical point of view, the introduction of a lottery gives rise to
multiple equilibria. Given that now agents are symmetric, we find it reasonable
to focus on symmetric equilibria. It turns out there is a unique symmetric
equilibrium in mixed strategies. We will denote the game with a lottery as L.
Let L = {1, ...,n} denote the set of positions in line to which agents are assigned
by the lottery.

Proposition 4. Consider the game L = 〈N,L,Θ, {Xi,Si,ui, }i∈N, k, γ, qG, qB〉 There
exists a unique symmetric equilibrium in mixed strategies in the game with lottery
determined priorities. For k sufficiently low and γ sufficiently high agents decide to herd
with a positive probability.

To understand where this result comes from one can think the following.
If everybody else herds, then an agent knows that he can obtain a slot by
choosing to invest. As long as he observes a “good” signal, this is a best response
independently of the outcome of the lottery. Now as the probability of all other
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agents playing informatively increases, it becomes more and more likely to be
placed in a position in the back of the line with a high probability of more than
m̂ agents in the positions in front playing informatively. In such a position the
expected payoff is less than the outside option. If this probability is too high,
then it is best for an agent to switch his strategy to herding. There is some level
of this probability where an agent becomes indifferent between informative play
and herding. It is easy to see that as the value of the outside option γ increases,
this level becomes lower, since herding becomes more attractive. The opposite
happens with the number of available slots k. This is because for a higher k there
is a higher chance to be positioned through the lottery to one of the front spots
in the line where one is immune to the winner’s curse.

A natural question that rises is how the introduction of the lottery affects
the characteristics of equilibrium. In particular, what effect does it have on
herding behavior? While the symmetric equilibrium allowed us to highlight the
existence of the winner’s curse effect even with homogeneous agents, it does
not lend it self for easy comparison to the equilibrium of the case where agents
know their position in line. In the following proposition we have a comparison
between pure strategy equilibria.

Proposition 5. In the lottery game there exist pure strategy equilibria in which
m̃(k, qA, qB,N) ≤ N agents play informatively. Furthermore, more agents play in-
formatively in such an equilibrium than in the unique equilibrium of the game with
known priorities: m̃(k, qA, qB ≥ m̂(k, qA, qB) − 1.

In the game with no lottery any agent after m̂ knows that his expected payoff

from investing is less than his outside option and therefore herds. In the game
with a lottery as long as there are at least m̂ other agents playing informatively
an agent can be unlucky and be assigned a position in the line after all these m̂
or more agents and also get an expected payoff that is lower than his outside
option. Still, this is only one of the possible outcomes he faces. It is therefore
not necessary that he prefers to switch to herding. Thus it is possible for such
a profile with more than m̂ agents playing informatively to be sustained as an
equilibrium.

Combining this result with the one in proposition 2 it is easy to see that such
an equilibrium is not efficient. The uncertainty about priorities introduced with
the lottery allows for inefficiencies to be introduced due to the fact that equilibria
are possible in which the number of agents playing efficiently is higher than the
efficient level.
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6 A Bernoulli arrival process

In the Previous sections we have looked at two extreme cases concerning agents’
knowledge of their position in line. In the first, they are perfectly informed about
it while in the second they have no information whatsoever, since it is a lottery
that determines it. Given the results obtained for these two cases, a natural
question follows. What happens for “intermediate” cases of uncertainty about
priority? By an “intermediate” case we mean one in which agents do not know
their position with certainty, but still there is some heterogeneity among agents.
Some know it is more likely for them to be in the front while others find it more
likely to be in the back. How does such uncertainty and heterogeneity affect
equilibrium behavior?

Modeling such a situation for a finite number of agents is not a trivial task. For
agents’ beliefs to be consistent it would require that the n×n matrix, representing
each agents probability distribution for each position in the line, to be a doubly
stochastic matrix3.

We choose here a different approach. We use a Bernoulli arrival process to
model an “intermediate” uncertainty case. In particular, we consider that time
is divided in discrete intervals. In each time period t an agent arrives with
positive probability p, the arrival rate. While the individual agent knows his
time of arrival and the arrival rate at the time of making his decision he does not
know the realized number of arrivals in the preceding periods. Coming back to
the image of the line, one can think that the line exists inside a room. Agents
arrive at the room’s door and must make a decision before entering. They can
not see how many agents have already entered the room before them. Once
they make their decision and enter, they stand in line behind the ones that are
there already, but cannot change their decision.

It is of course convenient to take time in this model at face value and consider
it as a model of cases where “first come, first served” is used to allocate slots.
This would of course fit the “robot example” in the introduction as well as many
other cases of markets where such a rule is used. An alternative view would
be to think of time in the model as a metaphor for the information agents have
about their priority. The arrival time t could simply represent a private signal
for the agent about his priority. The higher this signal, the more likely it is that

3Each row and each column add up to 1. This should be so because both the probabilities
over positions for an agent must add up to 1 as the probabilities for any position to be filled by
one of the agents
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the agent is actually in the back of the line. In applications this signal together
with the arrival rate contains all the (noisy) information agents have about the
total number of agents participating in the market and their individual priority.

Note that now the set of agents is not fixed. There is uncertainty about the
total number of players in the game. This makes it a game with population
uncertainty (Myerson, 1998 (26)). Still it is not a poisson game, which is the
population uncertainty game usually studied, but which is not relevant in this
context. To our knowledge it is the first instance of such a game in which pop-
ulation uncertainty is modeled by a Bernoulli process. Let us call it a Bernoulli
game.

In such a game the set of agents is replaced by the set of types and a dis-
tribution over that set. An agent’s type is determined by his time of arrival
t ∈N = {1, ...} and his private signal st ∈ {g, b}. The set of types is T =N × {g, b}.
The distribution over the set of types is given by the arrival rate p and the
accuracy of the signals qG and qB.

It turns out that this game has a unique equilibrium with similar charac-
teristics to the equilibrium of the game with no uncertainty. The following
proposition describes this result.

Proposition 6. Consider the Bernoulli gameB = 〈T, {p, qG, qB},Θ, {X(t,s),u(t,s), }(t,s)∈T, k, γ〉
and assume Condition 1 holds. There exists a unique Bayesian Nash equilibrium of this
game. In equilibrium, all agents that arrive at t < t̂(k, qA, qB, p) choose according to
their private signal. All others choose O, independently of their signal. Furthermore,
t̂(k, qA, qB, p) ∈

(
m̂(k, qA, qB),∞

)
.

This result has a similar flavor to the one in proposition 1. There it was
agents standing after a specific point in line that choose to herd. Here it is agents
arriving after a specific point in time. The intuition that drives it is similar.
Suppose everybody plays informatively. Agents arriving early see it as highly
likely to be in the front of the line and therefore are happy playing informatively.
Furthermore, their payoff does not depend on what others that arrive later do.
The later an agent arrives, the more likely it is for him to be placed further
back in the line. This depends on how many agents have arrived before him.
Since all these agents will be playing informatively, we know from our previous
results, that when the probability of being placed towards the back becomes
high, eventually it is better to switch one’s strategy to herding. The same is then
true for all agents arriving after that point in time.

Concerning efficiency, we do not provide a formal result, but it is easy to
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see that this equilibrium is ex ante (before population uncertainty is resolved)
efficient. This is for the same reasons as in the game with known priorities. Of
course, once population uncertainty gets resolved but before the revelation of
the state of nature, the equilibrium will generally not be efficient. It can only
be efficient if the realized arrivals before time t̂ equal exactly m̂ − 1. This will
generally not be true.

Now that we have characterized behavior in this model of “intermediate”
uncertainty about priorities we can look at one final issue. The relationship
between this uncertainty and the behavior of agents. Looking at the equilibrium
results for the two extreme cases (known priorities, lottery) one might think that
there is a monotonic relationship between uncertainty and the incentives to herd.
In particular it looks as if higher uncertainty about one’s priority attenuates the
winner’s curse effect and makes informative play more attractive. In what
follows we demonstrate by a counterexample that this is not always the case.
The uncertainty about one’s priority can have an effect on behavior, but the
direction is not always the same. It depends on the whole parameter set.

In the following exercise we calculate the expected payoff of agents arriving
at different time periods. For each agent we adjust the arrival rate in such a
way that the expected number of earlier arrivals remains the same. For instance
there can be two agents, one arriving at time t and the other at t′ > t. Suppose
the respective arrival rates are p and p′ such that for both agents the expected
number of earlier arrivals is p(t − 1) = p′(t′ − 1) = λ. Still, the variance of the
distribution of earlier arrivals is different in each case. It must be p(1−p)(t−1) <
p′(1 − p′)(t′ − 1). One can therefore argue that in the second case the agent
faces a higher uncertainty about his position in line. If the conjecture about
the monotonic relationship between priority uncertainty and behavior were
true, then we should expect that if the second agent plays informatively in the
equilibrium of his game then so would the first agent in his respective game.
And if the first herds in the equilibrium of his game, then so does the second in
the equilibrium of the respective game. We use a numerical example to show
this is not the case.

Example 2. The graph shows an example for a particular choice of parameters
k = 4, qG = qB = .733, andγ = .5. Also, In this example we have fixed the expected
number of earlier arrivals for each agent to λ = 6.226. From the properties of
the Bernoulli distribution we have λ = tp. So given the time of arrival of an
agent and in order to keep λ constant, we calculate a different arrival rate for

27



each agent t: p = λ
t . This means that each agent we consider plays a different

game. The horizontal axis shows the time of arrival of an agent. The vertical
axis shows his expected payoff from deciding to invest after observing a signal
s = g. That is: E[u(I; (t, g)]. An agent arriving at t plays informatively when
this is higher than the value of the outside option, γ. The horizontal line in the
graphs indicates the value γ. Thus, points above this line correspond to agents
that play informatively in the equilibrium of their respective game. Notice that
p is decreasing in t. The variance for each agent t is tp(1 − p) = λ(1 − p) which is
decreasing in p. This means that the later an agent arrives in this exercise, the
higher the variance he faces.

As can be seen in the graph, the monotonicity one might expect given our
previous results is not there. Take an agent arriving at t = 8 and one arriving at
t = 14. They both play in games where all parameters are the same except for the
arrival rate. Still, this is such that they both expect the same number of agents
to have arrived before them. The number of these previous arrivals is a random
variable and has the same mean for both agents, but a different variance. This
is larger for the agent arriving at t = 14. Assuming the agents both observe a
private signal s = g, their expected payoff from choosing to invest is shown in
the vertical axis. It is clear that fro the agent arriving at t = 8 it is best not to
invest since he obtains a higher payoff from the outside option. The opposite is
true for the agent arriving at t = 14.

The following graph can help explain this fact. The bell-shaped curves
represent the distributions of previous arrivals that agents arriving at t and
t′ face. These have both the same mean λ. Thus the one for t′ is a mean-
preserving spread of the one for t. Once this uncertainty is resolved, agents find
themselves in a certain position m in the line. The quasi-U-shaped curve that
spans horizontally represents the expected payoff from choosing to invest for an
agent in position m that has observed a signal s = g. The straight horizontal line
indicates the value of the outside option γ. The expected payoff from investing
when observing s = g for an agent arriving at t is calculated by taking the sum of
the area below E[um(I, g)] weighted by the corresponding binomial distribution.
For an agent to decide whether or not to invest, this must be compared to the
payoff from the outside option. The mean preserving spread for the agent that
arrives later, at t′, puts less weight close to the mean λ and more weight on the
sides of the distribution. While this has a positive effect on the left side where
the expected payoff from investing is higher that γ it can have a negative effect
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Figure 6: An example of non-monotonicity in the relationship between uncertainty and
behavior.

on the right side where the expected payoff is less than γ. Which of the effects
is stronger depends on the whole parameter set considered.
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7 Conclusions

We presented a simple model of a market for limited investment opportunities.
Incomplete information and a common value, combined with the limited offer
of investment opportunities generate a winner’s curse effect. Agents’ equilib-
rium behavior depends on their priority, which is exogenous. We discuss how
changes in the availability of investment slots, the accuracy of information and
knowledge concerning the priority order can have an impact of the demand for
the investment opportunities and the performance of the market in general.

In our model, agents face no budget constraint. Furthermore, the size of the
supply of investment opportunities is not connected to their payoff. This allows
for a more tractable analysis. It is reasonable to think that in reality any change
in the supply of investment slots should be connected to a change in the price of
investment and its attractiveness. For instance, an entrepreneur seeking up to
30,000 euros of capital for a new project can offer 15 slots for 2,000 euros each, or
20 slots of 1,500 euros each. Increasing the number of slots and maintaining the
total capital constant makes each slot more affordable. On the other hand, the
returns for each slot will also be lower. Our analysis abstracts from these issues.
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Nevertheless, it suggests that such a change in the model would not affect the
results concerning the existence of the winner’s curse and its consequences.

In the literature on IPO underpricing4, a winner’s curse effect is identified as a
theoretical possibility but is attributed to a problem of assymetry of information
between perfectly informed and completely uninformed agents. Rock (1986)
(30) concludes that “...the institutional mechanism for delivering the shares to
the public is irrelevant as far as the offer price discount is concerned.”. In
our paper, we show that institutions matter because a winner’s curse can arise
even when agents are symmetrically informed. It is the design of the market
institutions that determines what the effects of the curse will be. An interesting
extension to our model would be to allow for agents to decide whether or not to
acquire information before deciding to invest. Given the winner’s curse effect,
even if the cost of information is low, some agents may decide not to acquire
information in equilibrium, giving rise to endogenous information asymmetry.
Such a result would form a bridge between our model and the one by Rock.

In this paper we find that social learning is not necessary for agents to make
inferences about others’ information and adapt their behavior accordingly. In
environments with incomplete information and a common value, limited supply
gives rise to herding behavior. Then, the particular mechanism used to assign
priorities determines agents’ demand. A natural next step is to think about
implications for mechanism design in general. For example, our model can be
viewed as a fixed price auction. How does it perform compared to a regular
auction? How much information should participants have about others’ actions
or about their own priority? Building on the basis that we set here, we plan to
further explore these issues both theoretically and experimentally.

We primarily focused our analysis on the buyers’ side of the market. Even
so our analysis shows how a seller can influence demand by determining the
relative payoffs and the available supply. These conclusions are based on the
implicit assumption that the seller is uninformed about the state. If this is
not the case, the situation becomes an interesting signaling game in which the
seller can reveal information about the state through the choices of available
supply and price. Another possible signaling vehicle that is worth exploring
is a practice that is observed in some emerging crowdfunding platforms and
other markets. The seller there sets a minimum demand threshold that must be
covered to make the offer effective. In other words, if the minimum threshold
is not reached no money changes hands. It can be interesting to study how a

4See the survey by Ljungqvist (2004) (22).
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seller would optimally set such a threshold given its signaling content and the
presence of the winner’s curse. A model in which entrepreneurs use such a
threshold to compete for investors is something we view as a potential route for
future research.

Our results depend critically on the assumption of fully rational agents,
sophisticated enough to be aware of the winner’s curse and act accordingly.
Whether actual individuals have this level of sophistication is a matter of debate.
Experimental and empirical data on common value auctions are not conclusive.
Nevertheless, besides contributing to this debate with another open question,
our model also provides a useful tool: it represents a simple binary choice model
in which the winner’s curse appears. Therefore It can easily be used in experi-
ments to test individuals’ awareness of the curse or other related issues. Louis
(2011) (23) uses the two-agent version of the model from example 1 in such a way.
Subjects play the game in the example both sequentially and simultaneously.
The question is whether the same individual may be sophisticated enough to
detect the curse in the sequential game, but not in the simultaneous. It turns
out that a significant portion of subjects fall in to this category, something that
it not predicted neither by Bayesian-Nash equilibrium, nor by other alternative
theories.

References

[1] Acemoglu, D., Dahleh, M. A., Lobel, I., and Ozdaglar, A. Bayesian
learning in social networks. Review of Economic Studies 78, 4 (2011), 1201–
1236.

[2] Alevy, J., Haigh, M., and List, J. Information cascades: Evidence from a
field experiment with financial market professionals. The Journal of Finance
62, 1 (Feb 2007), 151–180.

[3] Anderson, L., and Holt, C. Information cascades in the laboratory. The
American economic review 87, 5 (Dec 1997), 847–862.

[4] Austen-Smith, D., and Banks, J. S. Information aggregation, rationality,
and the condorcet jury theorem. The American Political Science Review (Jan
1996).

[5] Banerjee, A. A simple model of herd behavior. The Quarterly Journal of
Economics 107, 3 (Aug 1992), 797–817.

32



[6] Becker, G. A theory of marriage: Part i. Journal of Political Economy 81, 4
(Jul 1973), 813–846.

[7] Bikhchandani, S., Hirshleifer, D., and Welch, I. A theory of fads, fash-
ion, custom, and cultural change as informational cascades. The Journal of
Political Economy (Jan 1992).

[8] Callander, S., and Hörner, J. The wisdom of the minority. Journal of
Economic Theory 144, 4 (2009), 1421–1439. e2.

[9] Chade, H. Matching with noise and the acceptance curse. Journal of Economic
Theory 129, 1 (Jul 2006), 81–113.

[10] Chakraborty, A., Citanna, A., and Ostrovsky, M. Two-sided matching
with interdependent values. Journal of Economic Theory 145, 1 (Jan 2010),
85–105.

[11] Chamley, C. Rational herds: economic models of social learning. Cambridge
Universoty Press, Jan 2004.

[12] Crawford, V., and Iriberri, N. Level-k auctions: Can a nonequilibrium
model of strategic thinking explain the winner’s curse and overbidding in
private-value auctions? Econometrica 75, 6 (Nov 2007), 1721–1770.
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A Proofs

Proof. (Proposition 1) The fist k agents in the line face a simple decision problem.
Whether they are assigned a slot or not does not depend on what others do.
Therefore, given Condition 1 their dominant strategy is to play informatively.
This means to follow their signal: xi = I when si = g and xi = O when si = b.
Any agent standing in position m′ > k gets a slot assigned only if less than k of
the m = m′ − 1 agents standing in front of him choose to invest. If this is not
the case he obtains γ independently of his decision. He takes this into account
when calculating his expected payoff from choosing whether or not to invest.

First let us consider agent m′ = k+1. and suppose he receives a private signal
sm′ = b. All k agents standing on front of him play informatively and therefore
their actions reveal their private signals. In other words, if for example k agents
invest, it means that these k agents have received a private signal si = g. His
expected payoff from choosing to invest is:

E[uk+1(I)|b] =Pr(G|b)
[
Pr

(∣∣∣{s j = g, j ≤ k}
∣∣∣ < k |G

)
+

(
1 − Pr

(∣∣∣{s j = g, j ≤ k
∣∣∣ < k |G

))
γ
]

+ Pr(B|b)
[(

1 − Pr
(∣∣∣{s j = a, j ≤ k}

∣∣∣ < k |B
))
γ
]

His expected payoff from choosing not to invest is :

E[uk+1(O)|b] = γ

Note that:

Pr{G|b} =
1 − qG

1 − qG + qB

Pr{B|b} =
qB

1 − qG + qB

Pr
{
#{s j = g, j ≤ k} < k |G

}
= 1 − qk

G

Pr
{
#{s j = a, j ≤ k} < k |B

}
= (1 − qB)k

We now show that when Condition 1 holds, the expected payoff from investing
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in this case is always lower than the one from not investing. Suppose not:

E[uk+1(I)|b] > E[uk+1(O)|b]
1 − qG

1 − qG + qB

[
1 − qk

G + qk
Gγ

]
+

qB

1 − qG + qB
(1 − qB)kγ > γ

1 − qG

1 − qG + qB

(
1 − qk

G

)
+

(1 − qG)qk
G + qB(1 − qB)k

1 − qG + qB
γ > γ

1 − qG

qB
>

1 − qG

qB
+

1 − (1 − qB)k

1 − qk
G

γ
1 − qG

qB
>

1 − (1 − qB)k

1 − qk
G

γ

1 − γ(
qG > 1 − qB , f rom Condition 1

)
1 − qG

qB
>

1 − qk
G

1 − qk
G

γ

1 − γ
1 − qG

qB
>

γ

1 − γ

The last inequality contradicts Condition 1. This proves that for agent m′ = k + 1
it is a best response not to invest when observing sm′ = b. Note that this result
does not depend on k. We can therefore extend it by saying that any agent
m′ = m + 1 > k that observes sm′ = b and where all m preceding agents play
informatively, best responds by not investing.

Now consider agent m′ = m + 1 > k which receives signal sm′ = g and
suppose all m preceding agents play informatively. Let FnX(l) be the cumulative
distribution of g signals for n players when the state of nature is X. Then l follows
a binomial distribution and in particular FnG is the cumulative distribution of
B(n, qG), while Fn,B is the one for B(n, 1 − qB).

E[um′(I)|g] > E[um′(O)|g]

Pr(G|g)
[
Pr

(∣∣∣{s j = g, j ≤ k}
∣∣∣ < k |G

)
+

(
1 − Pr

(∣∣∣{s j = g, j ≤ k}
∣∣∣ < k |G

))
γ
]

+Pr(B|g)
[(

1 − Pr
(∣∣∣{s j = a, j ≤ k}

∣∣∣ < k |B
))
γ
]
> γ

qG
[
FmG(k − 1) + (1 − FmG(k − 1))γ

]
+(1 − qB) (1 − FmB(k − 1))γ > γ(qG + 1 − qB)

qG(1 − γ)FmG(k − 1) − (1 − qB)γFmB(k − 1) > 0 (4)
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As long as 4 holds, player m′ plays informatively. Next we show that the LHS
of 4 is either increasing or quasi-convex with respect to m.

E[um′(I)|g] ≷E[um′+1(I)|g]
qG(1 − γ)Fm,G(k − 1)
−(1 − qB)γFm,B(k − 1) ≷ qG(1 − γ)Fm+1,G(k − 1)

− (1 − qB)γFm+1,B(k − 1)
qG(1 − γ)[Fm,G(k − 1) − Fm+1,G(k − 1)] ≷(1 − qB)γ[Fm,B(k − 1) − Fm+1,B(k − 1)]

qG(1 − γ)
(1 − qB)γ

≷
Fm,B(k − 1) − Fm+1,B(k − 1)
Fm,G(k − 1) − Fm+1,G(k − 1)

(5)

Let Ix(α, β) denote the regularized incomplete beta function. Since FmG and FmB

are binomial distributions we have:

FmG − Fm+1G = I1−qG(m − k + 1, k) − I1−qG(m − k + 2, k)

= I1−qG(m − k + 1, k) − I1−qG(m − k + 1, k) +
qk

G(1 − qG)m−k+1

(m − k + 1)B(m − k + 1, k)

=
qk

G(1 − qG)m−k+1

(m − k + 1)B(m − k + 1, k)
(6)

Here B(m − k + 1, k) represents the beta function. Similarly we get:

FmB − Fm+1B = IqB(m − k + 1, k) − IqB(m − k + 2, k)

=
(1 − qB)kqm−k+1

B

(m − k + 1)B(m − k + 1, k)
(7)

Thus from 5,6 and 7 we obtain:

qG(1 − γ)
(1 − qB)γ

≷
(1 − qB)kqm−k+1

B

qk
G(1 − qG)m−k+1

1 − γ
γ
≷

(
1 − qB

qG

)k−1 ( qB

1 − qG

)m−k+1

When the RHS is smaller then E[um′(I)|g] > E[um′+1(I)|g]. It is easy to see that the
RHS is increasing in m, since qB > 1− qG (from Condition 1). It is easy to see that
for m = k which is the smallest possible value for m the RHS can be smaller than
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the LHS. We have:

1 − γ
γ
≷

(
1 − qB

qG

)k−1 qB

1 − qG

1 − qG
qB
≷

(
1 − qB

qG

)k−1 γ

1 − γ

Which for sufficiently high k gives LHS > RHS. Still, as m grows the inequality
must eventually switch and remain switched. This shows that E[um′(I)|g] may
be initially decreasing in m and then becomes increasing. This makes it either
an increasing or a quasi-concave function of m.

We now show that it can not be that it is increasing and 4 holds. We do so by
contradiction. Suppose it is. Then we have:

γ

1 − γ

(
1 − qB

qG

)k−1 ( qB

1 − qG

)m−k+1

> 1 (8)

and from 4
1 − γ
γ

qG

1 − qB
>

FmB(k − 1)
FmG(k − 1)

(9)

But then:

γ

1 − γ

(
1 − qB

qG

)k−1 ( qB

1 − qG

)m−k+1

<
γ

1 − γ
1 − qB

qG

(
qB

1 − qG

)m−k+1

{since qG > 1 − qb}

<
FmG(k − 1)
FmB(k − 1)

(
qB

1 − qG

)m−k+1

{from 9}

<

∑k−1
i=0

(m
i

)
qi

G(1 − qG)m−i∑k−1
i=0

(m
i

)
(1 − qB)iqm−i

B

(
qB

1 − qG

)m−k+1

<

∑k−1
i=0

(m
i

)
qi

G(1 − qG)k−1−i∑k−1
i=0

(m
i

)
(1 − qB)iqk−1−i

B

= 1

Which contradicts 8! This shows that when E[um′(I)|g] is increasing, 4 does
not hold. Since we already showed that E[um′(I)|g] becomes increasing in m
as m grows, this shows that eventually as it does so an agent will not play
informatively and so will all agents after him. Notice that the LHS of 4 goes
to zero as m grows. This means the inequality never switches back. After one
agent switches away from informative play, so do all agents after him.
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Proof. (Proposition 2) Let W(m) denote the sum of expected utilities from a
pure strategy profile in which m agents play informatively. For the equilibrium
profile we have:

W
(
m̂(k, qA, qB)

)
=

m̂(k,qA,qB)∑
m=1

E[um(x)] + (N − m̂(k, qA, qB))γ

From the proof of proposition one we know that for an agent m playing infor-
matively: E[um(x)] > γ for m < m̂(k, qA, qB) and E[um(x)] < γ for m < −m̂(k, qA, qB).
It is therefore immediate to see that:

m′∑
m=1

E[um(x)] + (N −m′)γ <
m̂(k,qA,qB)∑

m=1

E[um(x)] + (N − m̂(k, qA, qB))γ

<
m′′∑

m=1

E[um(x)] + (N −m′′)γ

Which summarizes to:

W(m′) < W
(
m̂(k, qA, qB)

)
< W(m′′)

for m′ < m̂(k, qA, qB) < m′′. Also note that this is independent of N, which proves
the proposition. �

Proof. (Proposition 3)

Ek+1[um(A)|a] > Ek[um(A)|a]
qAFmA(k + 1) + (1 − qB) (1 − FmB(k + 1)) > qAFmA(k) + (1 − qB) (1 − FmB(k))

qA

1 − qB
>

FmB(k + 1) − FmB(k)
FmA(k + 1) − FmA(k)

>
fmB(k + 1)
fmA(k + 1)

>

( m
k+1

)
(1 − qB)k+1qm−k−1

b( m
k+1

)
qk+1

A (1 − qA)m−k−1

1 >
(

1 − qB

qA

)k ( qB

1 − qA

)m−k

(10)
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From the proof of proposition 1 we know that 10 must hold for m̂. This player
is the first (in order of priority) that herds. We show that increasing k increases
m̂’s expected payoff from playing informatively and therefore he eventually
switches to that strategy. This makes m̂ + 1 the first player to herd. �

Proof. (Proposition 4) We know from proposition 1 that given Condition 1 any
agent that receives signal si = b best replies by not investing. Let σ denote the
probability with which an agent decides to play informatively. For an agent
that receives signal si = g the expected payoff from investing given that all other
agents play strategy σ ∈ [0, 1] is:

Eσ[u(I)|g] =
qG

qG + 1 − qB

 k
N

+
1
N

n−1∑
m=k+1

k−1∑
i=0

(
m
i

)
σi(1 − σ)m−i


+

1
N

n−1∑
m=k+1

m∑
i=k

(
m
i

)
σi(1 − σ)m−iE[um+1(I)|g]

It is easy to sea that given the properties of the binomial distribution and the
fact that as was shown in the proof of proposition 1 E[um+1(I)|g] ≤ qG

qG+1−qB
, the

above expression is decreasing in σ. The symmetric equilibrium strategy σ∗ is
the one that solves the following equation:

Eσ∗[u(I)|g] = γ (11)

Note that for σ = 0 we have:

Eσ[u(I)|g] =
qG

qG + 1 − qB
> γ

And for σ = 1 we obtain:

Eσ[u(I)|g] =
qG

qG + 1 − qB

k
N

+
1
N

n−1∑
m=k+1

E[um+1(I)|g]

The RHS in the last expression can be less than γ if k is low enough or γ is high
enough. When this is the case, 11 has a unique solution σ∗ ∈ (0, 1). Otherwise,
the unique symmetric equilibrium obtains for σ∗ = 1. �

Proof. (Proposition 5) Consider a strategy profile in which m̃ agents play in-
formatively and all others herd. It is easy to see that m̃ < k can not be an
equilibrium profile. Suppose it were. Then an agent i that herds and observes
si = g is better of investing since he can obtain a slot and his payoff will be
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E[ui(I)|g] =
qG

qG+1−qB
> γ = E[ui(O)|g]. Thus it is not an equilibrium.

Consider m̃ ≥ k. Suppose i is in the set of agents that play informatively and
receives signal si = g. His expected payoff from investing is:

Em̃[u(I)|g] =
qG

qG + 1 − qB

k
m̃

+
1
m̃

m̃−1∑
m=k+1

E[um(I)|g] (12)

For m̃ to characterize an equilibrium profile it must be that:

Em̃[u(I)|g] ≥ γ
Em̃+1[u(I)|g] < γ

The first of these two conditions guarantees that no agent playing informatively
has an incentive to deviate. The second does the same for the agents herding.
We know that these conditions are necessary and sufficient from the properties
of E[um(I)|g] derived in the proof of proposition 1. It is immediate to see that
m̃ < m̂(k, qA, qB)− 1 cannot be an equilibrium. By definition, E[ui(I)|g] > γ , ∀ i <
m̂(k, qA, qB). Thus, such a profile would violate the second of the equilibrium
conditions above. �

Proof. (Proposition 6) Let:

gA(m, k) =

1 , m ≤ k
FmA(k) , m > k

and

gB(m, k) =

1 , m ≤ k
FmB(k) , m > k
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Then, given k:

Et[um+1(A)|a] =

=
qA

qA + 1 − qB

 t∑
m=0

(
t
m

)
pm(1 − p)t−m

· gA(m, k)


+

1 − qB

qA + 1 − qB

1 − t∑
m=0

(
t
m

)
pm(1 − p)t−m

· gB(m, k)


=

1
qA + 1 − qB

 t+1∑
m=0

(
t
m

)
pm(1 − p)t−m (

qAgA − (1 − qB)gB
)

+ (1 − qB)


=

1
qA + 1 − qB

 t+1∑
m=0

(
t
m

)
pm(1 − p)t−mE[um+1(A)|a] + (1 − qB)


Notice that for m < m̂(k, qA, qB), Et[um+1(A|a] > 0, thus the above expression is
positive. This means that all agents arriving at t < m̂(k, qA, qB) play informatively.
This proves the minimum bound on m̂(k, qA, qB). From now on consider t ≥
m̂(k, qA, qB). Remember that E[um+1(A)|a] is a quasi-concave function. Let m̃ be
such that this function is decreasing for m ≤ m̃ and increasing for m > m̃. From
the proof of proposition 1 we have that m̃ > m̂. Then we have:

(qA + 1 − qB)Et[um+1(A)|a] =

+

m̃∑
m=0

(
t
m

)
pm(1 − p)t−mE[um+1(B)|a] +

t∑
m=m̃

(
t
m

)
pm(1 − p)t−mE[um+1(B)|a] + (1 − qB)

From stochastic dominance for the Bernoulli distribution we have that the first
summation is decreasing in t. The second summation is always negative. The
last term is constant with respect to t. Thus, as t increases, the expected payoff
crosses zero at most once. t̂(k, qA, qB, p) is such that the expected payoff is negative
for this value and positive for all smaller t. The agent arriving at t̂(k, qA, qB, p)
ignores his private information and herds. All agents arriving after t̂(k, qA, qB, p)
have the same expected payoff and herd as well. �
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