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Abstract 

Quantal response equilibrium replaces the sharp best responses of standard game theory with 

smoothed “quantal” responses.  This theory incorporates elements of stochastic choice originally 

developed by mathematical psychologists and statisticians into an equilibrium in which players’ 

beliefs that motivate decisions are consistent with the stochastic choices resulting from those 

decisions.  This paper provides an introduction to quantal response models, with intuitive graphical 

representations that highlight connections to Nash equilibrium and level-k analysis in  non-

cooperative games.  The analysis clarifies how standard (i.i.d.) error assumptions provide sharp, 

falsifiable predictions, even without specific distributional assumptions (logit, probit, etc.).  The 

emphasis is on a coherent behavioral game theory that explains intuitive deviations from Nash 

equilibrium predictions in experimental games. This primer walks the reader through a series of 

examples illustrating the application of QRE theory to simple matrix games, multiplayer games, 

games with continuous strategy spaces, multistage games in extensive form, and Bayesian games. 

 

I. Introduction: QRE as a Generalization of Nash Equilibrium 

 Most people, with a few prominent exceptions, will admit to making mistakes.  Moreover, 

it is apparent from analysis of competitive situations in athletics, business, and politics that people 

may alter their behavior in anticipation of their own and others’ mistakes.  In contrast, standard 

game theory is based on the assumption that players are perfect maximizers, i.e. they use their 

beliefs about uncertain events, including other players’ actions, to make decisions that are 

consistent with the maximization of expected payoffs.  An equilibrium results if there are no 

incentives for learning or change.  Thus the initial beliefs about others’ decisions must be 

consistent with those decisions, at least in a probabilistic sense.   
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The idea of modeling imperfect maximization with stochastic choice derives from the work 

of mathematical psychologists like Thurstone (1927) and Luce (1959).  This work was motivated 

by choice experiments in which subjects were asked to assess the relative intensities of two lights 

or two sounds.  Observed choice frequencies tended to be correlated with the difference in the 

stimulus intensity, but with some randomness when the intensity differences were  small.  The 

simplest Luce model stipulates that the choice frequency is the ratio of the stimulus intensity for 

that choice to the sum of intensities for all possible choices.  In economic models, the stimulus can 

be measured in terms of expected payoffs.  Suppose that there are two decisions, D1 and D2, with 

expected payoffs denoted by π1 and π2, so that the Luce ratio rule would be that the probability of 

D1 is:  Pr(𝐷1) = 𝜋1 (𝜋1 + 𝜋2⁄ ).  This rule exhibits an important responsiveness property in that 

the probability of choosing a decision is an increasing function of the expected payoff for that 

decision.  Notice that if the stimuli are of equal intensity, then the choice probability is 0.5, 

although other choice functions with this intuitive symmetry property can be used.   

In QRE theory, the basic building block for stochastic choice is the quantal response 

function (McKelvey and Palfrey 1995, 1996, 1998 and Goeree et al. 2016), of which the Luce ratio 

rule is a special case. Consider a simple symmetric game with two players, each with two 

decisions.  In this case, the expected payoffs could be functions of a belief p that represents a 

player’s beliefs about the likelihood that the other player chooses D1, so the Luce quantal response 

function would specify:  

 (1)       Pr(𝐷1) =
𝜋1(𝑝)

𝜋1(𝑝)+𝜋2(𝑝)
   (𝐿𝑢𝑐𝑒 𝑟𝑎𝑡𝑖𝑜 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑠𝑡𝑖𝑐 𝑐ℎ𝑜𝑖𝑐𝑒 𝑟𝑢𝑙𝑒). 

The probabilistic choice function is a quantal response, in contrast with a best response that would 

imply a probability 1 associated with the decision with higher payoffs.  A quantal response 

equilibrium in this symmetric context would require that the p representing beliefs in the expected 

payoffs on the right side of (1) be equal to the choice probability, Pr(D1), that is determined by the 

quantal response  function.  In equilibrium, there is no opportunity for learning in the sense that 

the quantal response probabilities match the beliefs, i.e. Pr(D1) = p.  For example, suppose that 

there is congestion in location 1 in the sense that π1(p) = V – p, with V > 1, whereas there is no 

congestion in location 2:  π2(p) = 0.5.  In this example, Pr(D1) =  p  =  (V−p) /(V−p +0.5).  The 

resulting equilibrium choice probability is increasing in V.  For example, p = 0.5 when V = 1, 

which increases to  p = 2/3 when V = 5/3.   
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The Luce quantal response function is useful in some applications, but it has two 

drawbacks. First, it is only defined for positive payoffs and would need to be adjusted if payoffs 

can be negative, in order to ensure non-negative choice probabilities. One might think that simply 

adding a sufficiently large constant to each payoff so that all payoffs are positive would solve the 

problem. Unfortunately – and this is the second drawback of using the Luce model as a quantal 

response function - one cannot arbitrarily add constants to payoffs in the Luce choice model, as 

the addition of a constant will change all of the choice probabilities.1 Another useful feature is to 

introduce a parameter that determines the amount of noise in the probabilistic choice, so that the 

limiting case of no noise (best responses) can represent the decision rule used in a Nash equilibrium 

in which each player best responds to the other’s choices.  One way to handle both issues – negative 

payoffs and inclusion of a response parameter – is to replace the expected payoffs with exponential 

functions parameterized by precision, λ > 0:2 

(2)       Pr(𝐷1) =
exp (𝜆𝜋1(𝑝))

exp (𝜆𝜋1(𝑝))+exp (𝜆𝜋2(𝑝))
 =  

1

1+𝑒−𝜆𝑥   𝑤ℎ𝑒𝑟𝑒  𝑥 = 𝜋1(𝑝) − 𝜋2(𝑝)   (𝐿𝑜𝑔𝑖𝑡) 

The logit quantal response function in (2) is positively responsive to payoffs.  Moreover, it is 

defined for both positive and negative payoffs, is strictly positive for all actions, and it satisfies 

symmetry, since the choice probability is 0.5 when the expected payoffs are equal, or equivalently, 

when the payoff difference x is 0.  Figure 1 shows the logit probabilistic choice rule as a function 

of the expected payoff difference on the horizontal axis.  The flatter curve with the “S” shape was 

constructed with a precision of  λ = 0.2, whereas the sharper curve was generated with a high 

precision of λ = 2.  The high-precision, sharp function essentially puts a probability of 1 on decision 

D1 when it has the higher payoff, i.e. when  𝜋1(𝑝) − 𝜋2(𝑝) >  0.   The logit rule has long been 

widely applied in economics in the analysis of individual decisions, e.g. the choice of a commuting 

route (McFadden, 1976), and it is now commonly used in the analysis of quantal response 

equilibrium for games that are implemented in laboratory experiments.   

 

                                                           
1 Recall that in non-cooperative games, adding a constant to all payoffs has no strategic consequences, in the sense 

that it does not change best response functions and does not change the set of Nash equilibria or correlated equilibria 

of the games. 
2 One can include a precision parameter for any generic specification of a quantal response function. For example, the 

power version of the Luce ratio rule raises expected payoffs to a power λ:  Pr(𝐷1; λ) = 𝜋1
𝜆 (𝜋1

𝜆 + 𝜋2
𝜆⁄ ). 
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Figure 1. Logit Probabilistic Choice for Decision D1.   
The flatter curve is for low precision, λ = 0.2, where the sharper function is for high precision λ=2.  Notice that both 

functions pass through the midpoint (x = 0, p = 0.5), as required by symmetry. 

 Quantal response equilibrium preserves the underlying structure of classical game theory, 

but adds stochastic choice to the decision making process.  This modification is implemented in a 

manner ensuring that smaller, relatively inconsequential errors are more likely than costly errors.  

In this sense, expected-payoff-maximizing best responses are replaced by better responses.  A 

quantal response equilibrium (QRE) is a fixed point of quantal response functions, just as Nash 

equilibrium is a fixed point of best response functions. Hence the distributions representing 

players’ beliefs are consistent with the  quantal responses to those beliefs.  In fact, a fixed point 

theorem was used to prove existence in the original paper on QRE by Richard McKelvey and 

Thomas Palfrey, published in Games and Economic Behavior in 1995.  Thus QRE is a 

generalization of the standard notion of Nash equilibrium, and it can be shown that quantal 

response equilibria converge to Nash equilibria as noise is diminished in the limit (see McKelvey 

and Palfrey, 1995, Theorem 2, and Goeree, Holt, and Palfrey, 2016, chapter 1). 

A natural  question to ask is: why is generalization  necessary?  After all, the standard 

analysis of equilibrium in games, which began with the seminal work of von Neumann and 

Morgenstern (1944) and Nash (1950), has been extended to include restrictions on rational choice 

in dynamic settings (Selten, 1965) and stochastic effects caused by privately known individual 
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differences (Harsanyi, 1973).3  Game theory has provided important insights for the development 

of new auction and mechanism designs (Vickrey, 1961; Roth, 1992), and for the analysis of issues 

of industrial organization, regulation, and public policy (Tirole, 1988).  Applications to other fields 

like political science and law are extensive.  Indeed much of the early work in the mid-twentieth 

century was motivated by (and funded to deal with) bargaining between nation states in the shadow 

of conflict.  Political scientists have developed a variety of useful paradigms, e.g. the Baron and 

Ferejohn (1989) legislative bargaining game, and Elinor Ostrom’s (1990) analysis of common pool 

resource games in small societies.  Today, game theory and its behavioral extensions constitute 

the closest thing there is to a unifying theory of social science. 

Although game theory has been used to structure empirical work using naturally occurring 

data, most careful testing of the Nash equilibrium and related theory has involved controlled 

experiments, either in the laboratory (e.g., Selten and Stoecker (1986), Roth (1995)) or in the field 

(Ostrom, 1994).  Here, the message is mixed.  One of the most widely used paradigms in the social 

sciences, the prisoner’s dilemma, is a model that had its beginnings in a 1950 laboratory 

experiment designed to show that the equilibrium prediction (to “defect”) is not a likely outcome 

with repeated plays of the game.4  Moreover, Nash recognized that received the bargaining theory 

was not very useful in studying negotiations in the lab (there was no explicit consideration of 

fairness or inequity aversion in those days).  Selten’s path-breaking theoretical work on subgame 

perfection was initially a response to the need to eliminate the many “irrelevant” Nash equilibria 

for an oligopoly model used in one of his early laboratory experiments.  Even with subgame 

perfection, results of simple ultimatum bargaining experiments are sharply at odds with theoretical 

predictions (Güth, Schmittberger, and Schwarze, 1982; and as described by Selten in Svorenčík 

and Mass, 2016, pp. 155-6).   

                                                           
3 Some quantal response equilibria can be rationalized as Bayesian equilibria with additive privately known payoff 

disturbances. See McKelvey and Palfrey (1995, 1998). However, some quantal response equilibria cannot be 

rationalized as such, e.g., QRE based on the Luce ratio or more general “regular” quantal response functions (Goeree, 

Holt, and Palfrey, 2005). 
4 About 65 years ago, John Nash’s thesis advisor saw the payoffs for this type of game on the blackboard of a 

colleague’s office at RAND in Santa Monica, and he made up the story of the prisoner’s dilemma for a presentation 

in the Stanford psychology department on recent developments in game theory.  The payoffs, however, had been 

devised by two RAND researchers on the day they heard about Nash’s famous theorem on equilibrium in 

noncooperative games, and these payoffs were used in an experiment involving over a hundred repeated plays of this 

game with the same partner.  In a letter to the authors, John Nash later pointed out that the theory for a single shot 

game might not be applicable with repetition. For details, see Holt and Roth (2004). 



6 
 

The failures of subgame perfection are apparent for a centipede game, which was devised 

by Rosenthal (1982) to demonstrate the implausibility of the backward induction rationality in the 

presence of a large number of stages.  The centipede game essentially involves passing a tray with 

increasing and unequal payoffs back and forth between two players until one of them “takes,” 

which implements the payoffs at that point.  Payoffs are augmented with each pass, but the relative 

payoffs are reversed.  For example, the initial payoffs of $4 for A and $1 for B in the first stage 

are changed to $2 for A and $8 for B in the second stage, etc. Thus A should “take” in the first 

stage if B is expected to “take” in the second stage.  With a finite, known number of stages, a 

process of backward induction implies that A take in the very first stage and stop the game at that 

point.  In contrast, take decisions in the very first stage are uncommon (less than 10%) in laboratory 

experiments, even with repeated random matching (McKelvey and Palfrey, 1992). 5    

Theorists have long recognized that an overhaul of game theory is needed, but the news 

from controlled experiments is not uniformly bad, since observed patterns suggest some important 

features that should be captured by a more behaviorally relevant theory.  Human subjects typically 

do show systematic correlations between observed behavior and changes in payoff incentives, 

although central tendencies can be far from the mark in some cases.  In centipede experiments with 

potential payoffs in the thousands of dollars, for example, “take rates” are increased, although take 

rates near the predicted probability of 1 in the first stage are still not the norm (Parco, Rapoport, 

and Stein, 2002).  So theory should be responsive, i.e. sensitive to payoff differences. Moreover, 

the noise in the data is inconsistent with point predictions that emerge from simple game-theoretic 

models, which highlights the need for a statistical theory that assigns positive probabilities, 

however small, to all outcomes.   

Quantal response equilibrium theory handles interactions by incorporating probabilistic 

choice functions into the equilibrium analysis of games.  The frequencies determined by these 

quantal choice models show some spread that depends on the balance between incentives 

(differences in stimuli) and noise -- due either to bounded rationality or to unobserved latent 

variables, which is the more common view in economic applications.  Regardless of the source, 

the resulting distribution around central tendencies in simple decision problems can be magnified 

                                                           
5 In fact, all Nash equilibria of the centipede game involve taking at the first stage, so this is more than just a violation 

of backward induction. This is in stark contrast with the ultimatum game, where every possible offer is consistent with 

Nash equilibrium.  
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due to cascading effects that shift the entire choice distribution in games with interdependent 

payoffs. QRE builds on Harsanyi’s (1973) path-breaking work on games with incomplete 

information, by letting agent-specific shocks represent the effects of the latent variables that inject 

noise into the system. This approach  was also used in the theoretical analysis of learning in games 

(Fudenberg and Kreps 1993).  The specific nature of the distributions of payoff disturbances, e.g. 

logit or probit, results in game-theoretic QRE models that are natural generalizations of widely-

used logit and probit econometric models of individual decisions.   

If payoffs are perceived with error, which can be modeled by adding “epsilon” errors to 

actual payoffs, then one issue is whether the added flexibility provided by error specifications 

provides so much flexibility that the model has no “empirical content.”  It is essential that a theory 

that permits deviations from perfect rationality maintain a degree of payoff responsiveness that 

preserves predictive power.  This question was raised by Haile, Hortaҫsu, and Kosenok (2008): 

“The quantal response equilibrium (QRE) notion of Richard D. McKelvey and 

Thomas R. Palfrey (1995) has recently attracted considerable attention, due in part to 

its widely documented ability to rationalize observed behavior in games played by 

experimental subjects…. However, even with strong a priori restrictions on 

unobservables, QRE imposes no falsifiable restrictions: it can rationalize any 

distribution of behavior in any normal form game.” 

Their argument is based on QRE in its most general form, for which an existence proof does not 

require that payoff disturbances be independent and identically distributed.  It is easy to understand 

how this can happen if random disturbances are not independent, for example, if the random payoff 

disturbance associated with one decision is systematically higher than that for another, even though 

both decision distributions have a zero mean.  For example, suppose that decisions D1 and D2 

have payoffs of 1 and 2 (a difference of 1), but the disturbance for the high-payoff decision D2  is 

always 0, whereas the disturbance realization for the low payoff decision D1 is 2 with probability 

p, except on a “correction interval” of size 1 – p, where the disturbance realization for D1 is an 

amount, –x. The magnitude of x is chosen to ensure that the expected value of that disturbance 

equals 0.  With disturbances that are not identically distributed in this sense, the choice 

probabilities for inferior decisions can be enhanced to any desired extent.  A similar argument can 

be made when the disturbances are not independently distributed.  Such counterintuitive results 
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are not possible with independent and identically distributed (i.i.d.) disturbances.6  In essence, the 

empirical content critique is irrelevant in that standard assumptions (i.i.d. disturbances) are 

sufficient to ensure that the QRE can make strong predictions, even for an experiment with a single 

treatment (examples to follow).7  Empirical restrictions are even stronger when an experiment has 

multiple treatments and the same QRE model is used for all treatments, as is the norm.  Multiple 

treatment designs and standard i.i.d. assumptions underlie virtually all empirical applications of 

QRE, just as i.i.d. logistic and normal errors are the basic components of the widely used logit and 

probit econometric models of individual decisions. 

The basic insight about empirical content is that an i.i.d. assumption on payoff disturbances 

requires that the probabilistic choice function, logit, probit, or anything in a wide class, will be a 

non-decreasing cumulative distribution function that passes through the center point of Figure 1.  

This is because when payoffs are equal (the center vertical line), the choice probability has to be 

one half (midpoint of the line).  The probabilistic functions can be flatter or sharper as they rotate 

around this center point, but any quantal response equilibrium would be a point in one of the two 

shaded rectangles in the figure.  In other words, a QRE will be a belief probability and associated 

expected payoff difference point in one of these shaded rectangles.  The nature of the expected 

payoff differences for the particular structure of a game will generate clear restrictions on the set 

of choice probabilities that could be QRE points, as will be shown in the following sections.  

The next section develops the connection between distributions of additive payoff 

perturbations and shapes of quantal response functions, for a class of symmetric games with binary 

decisions.  The analysis is based on a graphical device that separates payoff and noise factors, so 

that the “fixed point” involves the intersection of lines for each of these factors.  This graphical 

representation permits an analysis of existence, comparative statics, and stability issues.  In 

subsequent sections, the analysis is illustrated for a variety of increasingly complex games, e.g. 

                                                           
6 Since an individual decision problem is a trivial special case of a game, this observation by Haile, Hortaҫsu, and 

Kosenok (2008) also applies to standard probabilistic choice models (logit or probit) that are extensively used in 

applied econometric work.  Obviously, the critique is not relevant in that case either, since the i.i.d. assumption is 

standard in applied econometric work on individual decisions, just as it is standard in the application of QRE to the 

statistical analysis of game-theoretic data. 
7 This conclusion is derived more formally in Goeree, Holt, and Palfrey (2005 and 2016, chapters 2 and 6).  The notion 

of a regular quantal response equilibrium, as defined in Goeree, Holt, and Palfrey (2005), is grounded on axioms of 

a responsiveness, monotonicity, and continuity that preserve strong empirical restrictions, including those implied by 

i.i.d. payoff disturbances. 
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prisoner’s dilemma, battle of sexes, coordination, volunteer’s dilemma, matching pennies, and 

imperfect price competition.8   

II. The Connection between Payoff Perturbations and Quantal Responses 

The structural approach to quantal response is based on assumptions about the nature of 

random, decision-specific payoff perturbations that can soften the connection between payoffs and 

decisions.  A more reduced-form approach is to begin with assumptions about the properties of 

quantal response functions that map expected payoffs into choice probabilities.  In this section, the 

close connection between these two approaches is explained in the context of simple class of 

symmetric binary-choice games, in which the two possible actions (or “decisions”) will be labeled 

D1 and D2.  In each example to be considered, D1 will refer to the more pro-social decision, e.g. 

cooperate in a prisoner’s dilemma, exert high effort in a coordination game, volunteer to provide 

a public good, vote, invest in security, or exit from a congested environment.   

Each player has an expected payoff function that depends on the probability p that the other 

player chooses the pro-social decision D1.  In a symmetric equilibrium with N players, p represents 

the probability that each of the N–1 others chooses D1. As before, these expected payoffs will be 

denoted by π1(p) and π2(p) for decisions D1 and D2, where the symmetry precludes the need for 

player-specific payoff functions (extensions to asymmetric games will be discussed subsequently).   

Perceived or perturbed payoffs are modeled as sums of payoffs and additive (player-

specific) disturbances, εij , so that a player j will select D1 if:   𝜋1 + 𝜖1𝑗/𝜆 > 𝜋2 + 𝜖2𝑗/𝜆, or if  

𝜋1 − 𝜋2 > (𝜖2𝑗 − 𝜖1𝑗)/𝜆, or equivalently, if 𝜖2𝑗 − 𝜖1𝑗  <  𝜆 (𝜋1 − 𝜋2), where the positive 

“precision” parameter λ determines the importance of the disturbance.  As 𝜆 → ∞, the  𝜖𝑖𝑗/𝜆 terms 

go to zero and the effects of the random disturbances become irrelevant (perfect rationality).  

Recall that expected payoffs are functions of p, which can be thought of as representing a player’s 

beliefs about the chances that the other(s) will choose D1, and this difference will be denoted by 

Δ(p) = 𝜋1(𝑝) − 𝜋2(𝑝).  Thus the probability of actually choosing D1 is determined by the 

probability that the difference in disturbances will be less than the scaled payoff difference, 𝜆Δ(p).  

Let F(•) denote the cumulative distribution function associated with the differences in 

                                                           
8 A clear understanding of the strategic landscape of the games to be discussed can be achieved if they are run as class 

experiments.  See Holt (2019, chapters 8-11) for hints on how to use the free web-based Veconlab site for this purpose 
(http://veconlab.econ.virginia.edu/admin.php). An alternative is to use the popular Moblab platform 

(https://www.moblab.com/), which also has games with a political science focus.  

https://www.moblab.com/
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disturbances, so the probability of choosing D1 is the probability that 𝜖2𝑗 − 𝜖1𝑗 < 𝜆𝛥(𝑝) can be 

written as  𝐹(𝜆𝛥(𝑝)).  In equilibrium (with no incentive for change), the choice probability on the 

left side of (3) must equal the belief probability p used in the payoff difference on the right:   

(3)      𝑝 = 𝐹(𝜆Δ(𝑝)). 

The distribution function F is assumed to be continuous and monotonically increasing on the real 

line. In other words, the distributions have “full support,” so anything is possible (however 

unlikely), which is needed to avoid the “zero likelihood” problem.  This full-support property is 

obviously important when considering laboratory data generated by human subjects.   

The disturbances will be assumed to be identically and independently distributed, so each 

disturbance is equally likely to be larger or smaller than the other.  Therefore, F(0) = 1/2, i.e. the 

difference in disturbances is equally likely to be positive or negative.  It can also be shown that the 

i.i.d. assumption requires that the distribution of the difference in perturbations be symmetric, i.e. 

that F(x) = 1–F(–x), so F(0) = 1/2.  Payoff functions are assumed to be continuous, so (3) is a 

continuous mapping from a compact set [0,1] into itself, and a fixed point will exist (Brouwer’s 

theorem).  Uniqueness is another story, as will be apparent from examples. 

 If the payoff perturbations are Gaussian, for example, then their difference is Gaussian with 

mean zero and full support.  In that case, F(•) represents the cumulative distribution of a Normal 

distribution (probit QRE), with the variance proportional to the inverse of the precision parameter, 

λ.  Alternatively, if the perturbations have a double exponential (extreme value) distribution, then 

the distribution of the difference is logistic, with  

(4)         𝑝 = 𝐹(𝜆Δ(𝑝)) =
1

1+exp(−𝜆Δ(𝑝))
, 

which goes from 0 to 1 as the payoff difference goes from –∞ to ∞.  The logit probability 

expression on the right side of (4) is a ratio of exponential functions of expected payoffs: 

(5)         𝑝 =  
1

1+exp (−𝜆Δ(𝑝))
 =  

1

1+exp(−𝜆𝜋1(𝑝)+𝜆𝜋2(𝑝))
 =  

exp (𝜆𝜋1(𝑝))

exp(𝜆𝜋1(𝑝))+exp(𝜆𝜋2(𝑝))
 , 

where the denominator ensures that the probabilities sum to 1.  With more than two possible 

actions, the denominator would be a sum of exponential functions of the various expected payoffs.  

As the precision λ goes to 0, each of the exponential expressions converges to e0 = 1, so the choice 

probabilities converge to 1/2 (or to 1/n when there are n alternative actions).  Conversely, as λ goes 
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to infinity, payoff effects dominate noise, and the choice probability for the action with the higher 

payoff goes to 1, as can be seen by examining the right side of (4), depending on the sign of the 

expected payoff difference.  Finally, if there is a continuum of possible actions, e.g. a continuous 

range of prices or efforts, then the denominator of the logit expression would be an integral over 

exponentials of expected payoffs (details to follow in a subsequent section). 

 The endogenous choice probability, p, appears on both sides of the equilibrium condition 

(5), which must be solved to determine the equilibrium.  Closed-form solutions to this nonlinear 

equation are generally not available, but numerical methods are straightforward.  The game 

structure determines the expected payoff difference function, and with this, the far right term in 

(5) could be calculated in a spreadsheet, with successive rows for each incremental increase in p.  

The quantal response equilibrium (or equilibria) would be found in rows with a zero difference 

between the value of p in one column and the quantal response in the other (a finer grid can be 

used if a more precise calculation is needed).  Nonlinear minimization routines for standard 

programs like Matlab or R can be used to compute numerical solutions for complex games with 

asymmetries or multiple decisions, and hence, with the entire profile of quantal response choice 

probabilities to be determined simultaneously.9   

 Since the distribution function is increasing, it will have an inverse with the property that  

F–1(F(x)) = x.  It is straightforward to invert both sides of (3), and divide by λ, to separate the 

equilibrium condition into terms pertaining to noise on the left and payoffs on the right: 

 (6)      𝐹−1(𝑝)/𝜆 = Δ(𝑝). 

This decomposition, with both sides viewed as functions of p, can be represented graphically in 

the top panel of Figure 2, where the independent variable, p, is on the vertical axis, and expected 

payoff differences are on the horizontal axis.10  The expected payoffs (dashed line) are negative 

for all values of p, as would be the case where decision D1 is dominated and yields lower payoffs 

regardless of the probability p that the other player chooses D1.  The QRE is located at the 

intersection of the dashed-line expected payoff function and the “S-shaped” distribution line, 

which has been graphed so that F(0) = 1/2  as required by symmetry.  

                                                           
9 Sample  Matlab code for such calculations is provided in Goeree, Holt, and Palfrey (2016, Chapter 6). 
10 This decomposition was used in Goeree and Holt (2005b) for an analysis of political participation games with binary 

decisions, e.g. vote or not.  The difference here is that the probability is shown on the vertical axis, so that the inverse 

distribution has the familiar shape of a cumulative distribution function.   
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Figure 2. QRE for a Binary Choice Game with a Dominated Strategy, D1.  
The curved cumulative distributions represent a logistic function for λ = 0.4 (relatively high noise) in the top panel, 

and for λ=4 (relatively high precision) in the bottom panel.  The dashed line to the left of the 0 point shows that 

expected payoff differences are negative for all values of p, which indicates that D1 is a dominated strategy. The 

intersections determine the QRE, of p ≈ 0.15 in the top panel and p ≈ 0 in the bottom panel.   
 

The payoff difference line in each panel of Figure 2 is derived from a prisoner’s dilemma 

game used by Andreoni and Miller (1993), shown in Table 1.  For that game, mutual cooperation 

yields a payoff of 7 for each, whereas a unilateral defector obtains 12, so the payoff difference is 

−5.  This difference determines the intercept of the dashed line with the top of the figure.  

Conversely, when the other person defects, cooperation yields 0 as compared with 4 for mutual 

defection, so the horizontal intercept of the dashed line in the figure is −4. The dashed expected 

payoff line connects these two intercepts. 
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Table 1. A Prisoner’s Dilemma  

  Column Player 

  Cooperate (D1) Defect (D2) 

Row Player 
Cooperate (D1)        7,            7      0,           12 

Defect (D2)      12,            0      4,             4 

 

 The QRE for the game shown in the top panel of Figure 2 involves a positive (but low) 

probability associated with the dominated decision.  An increase in the precision, λ, transforms the 

inverse distribution into a shape that looks more like a sharp step function in the bottom panel, 

with near-zero choice probabilities on the left where expected payoff differences are negative, and 

near-unitary choice probabilities on the right where expected payoff differences are positive.  In 

the limit as precision goes to infinity, the QRE intersection converges to a zero probability 

associated with the dominated decision, e.g. defect in a prisoner’s dilemma.  In fact, the inverse 

distribution lines in Figure 2 were graphed for a logistic distribution with λ = 0.4 in the top panel 

and with λ = 4 for the bottom panel.  The take-away message is that QRE transforms sharp best 

responses into smoothed “better responses,” where all actions are chosen with positive probability.   

Notice that the payoff structure of the game determines the shape of the dashed payoff 

difference line in Figure 2, and the error structure determines the scaled distribution function.  The 

scaled distribution function has a general shape that depends on the associated precision, but the 

symmetry properties derived from the i.i.d. error structure will persist.  In contrast, various games 

to be considered will have payoff difference lines with different shapes.  For example, a vertical 

line corresponds to a situation in which the payoff loss from choosing D1 (e.g. cooperate) is the 

same whether or not the other player cooperates or not.  Obviously, the payoff difference line could 

have a positive slope for some games in which cooperation increases the incentives for others to 

cooperate.  The sections that follow will clarify the relationship between the various shapes and 

slopes of the expected payoff difference lines and the associated QRE equilibria.   

III.  Symmetric Two-Person Games  

 The most widely discussed paradigm in game theory is a prisoner’s dilemma in which each 

player has a unilateral incentive to defect (D2), when c > a  and  d > b for the game in Table 2.  

The experiment provides an opportunity for learning and possible convergence to equilibrium with 
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multiple rounds of play and random matching between rounds to minimize repeated game effects, 

e.g. the Andreoni and Miller (1993) “strangers” treatment.  It is obvious from Figure 2 that QRE 

can explain any cooperation rate for a prisoner’s dilemma, as long as it is less than 0.5.  So in this 

case, there is some empirical content, but not much, at least without other treatments.   

 Table 2. Prisoner’s Dilemma (c > a > d > b) or Battle of Sexes (c > b > a = d) 

  Column Player 

  D1 D2 

Row Player 
D1        a,            a      b,             c 

D2        c,            b      d,            d 

 

 Cooper et al (1996) report a prisoner’s dilemma with a random matching treatment, using 

payoffs (a = 8, b = 0 c = 10, d = 3.5), which resulted in cooperation rates in the 20-25% range for 

the last half of the random pairings.  The top panel of Figure 3 shows the logit QRE for this 

prisoner’s dilemma using the same precision of 0.4 as was used in the top panel of Figure 2. The 

resulting QRE intersection in the top panel of Figure 3 is close to the cooperation rate observed by 

Cooper et al. (1996).  In general, however, there is no a priori reason to expect a precision 

parameter that provides good predictions for one experiment to also provide good predictions for 

another experiment with different subjects and different payment protocols.  With smooth 

responses, QRE implies a significant percentage of dominated pro-social D1 choices.11  But for 

any game with a dominated strategy, the intersection of the expected payoff difference line will 

involve a choice probability p that is below 0.5, as indicated by the dark shading along the axis the 

top panel of Figure 3. 

                                                           
11 This observation is roughly consistent with the 10-20% cooperation rates (except for the first and last periods) 

observed by Andreoni and Miller (1993) with repeated random matching (“strangers”).  Cooperation rates were higher 

with a finitely repeated prisoner’s dilemma with the same payoffs and with fixed pairings (“partners”).The QRE 

analysis for repeated games is more involved (Goeree, Holt, and Palfrey, 2016, chapter 4).  Besides repetition, another 

aspect of many strategic interactions in business and politics is the ability to choose one’s partners and terminate 

pairings that are unsatisfactory, or even to exit and earn a default payoff for no pairing at all.  See Holt, Johnson, and 

Schmidtz (2015) for a general discussion of prisoner’s dilemma games with the ability to exit and/or scale up the 

intensity of interactions, factors that produce dramatically higher cooperation rates even in a finite series of random 

matchings, and hence, no ability to terminate pairings. 
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Figure 3. Logit QRE for a Prisoner’s Dilemma (top) and Battle of Sexes Game (bottom).    
The scaled distribution lines for both panels are drawn for precisions of 0.4.  The dashed-line expected payoff 

differences are determined by the payoffs used by Cooper et al (1989, 1996).  In each case (Prisoner’s Dilemma at the 

top and Battle of Sexes at the bottom), the symmetric QRE is pulled toward the center relative to the symmetric Nash 

equilibrium (at p = 0 in the top panel and at p = 0.25 in the bottom panel). 

 

Another standard strategic paradigm is a battle-of-sexes game, obtained by reversing the 

relative magnitudes of b and d, which prevents D2 from being a dominant strategy as it would be 

in a prisoner’s dilemma.  This would be the case if c = 6, b = 2, and with a = d = 0, which are the 

parameters used by Cooper et al. (1989, no-communication treatment) in an experiment using the 

same random matching protocol as was used in the prisoner’s dilemma (Cooper et al. 1996).  For 

the battle-of-sexes game, there is an asymmetric Nash equilibrium in which the row player chooses 

D2 and the column player chooses D1 (and only earns 2).  There is another asymmetric 

equilibrium, preferred by the column player, in which row chooses D1 and column chooses D2 

(and earns 6).  With random matching and no communication, players would not be able to 

coordinate on one of these inequitable equilibria, even if they could agree. 

The only symmetric equilibrium for the battle-of-sexes game is one in which each player 

chooses their “preferred” decision D2 with probability 0.75, corresponding to p = 0.25 for decision 

D1.  This is the probability that makes a player indifferent between the two decisions.  (In order to 
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be willing to randomize, the player’s expected payoffs for each decision must be equal.)  For 

example, if row chooses D1, there is a 0.75 chance of earning 2, and if row chooses D2 there is a 

0.25 chance of earning 6, which each yield expected payoffs of 6/4.  The bottom panel of Figure 

3 shows the symmetric QRE analysis for the battle-of-sexes game, using the same precision (λ= 

0.4) as before.  The dashed line crosses the vertical center line at p = 0.25, which is the Nash 

equilibrium probability p that yields equal expected payoffs (difference of 0).  The QRE 

intersection is at approximately p = 0.4, which is close to the observed frequency of 0.37 reported 

by Cooper et al. (1989).  The negative slope of the expected payoff difference line interacts with 

the curved distribution function to “pull” the QRE intersection up from the Nash intersection (of 

the expected payoff difference line with the vertical line at 0) towards the middle.  More noise 

(lower precision) produces flatter distribution functions, which generates QRE predictions that are 

closer to 0.5.  

Empirical Content of QRE in the Prisoner’s Dilemma and Battle-of-Sexes Games:  Even though 

the game represented in the top panel of Figure 3 has a particular structure (negative expected 

payoff differences, negative slope), there is a key aspect of the figure that would characterize any 

binary choice game with i.i.d. payoff perturbations.  This is the requirement that the distribution 

function pass through the point (0, 1/2), which is due to the fact that neither perturbation is more 

likely to be larger than the other.  That structural characteristic makes it clear that the QRE 

probability p determined by the intersection point cannot be made arbitrarily large or small by 

changing the distributions of the i.i.d. perturbations.  Adding noise will flatten the distribution, but 

it will remain monotonic and pass through the midpoint.  Therefore, all QRE models with i.i.d. 

perturbations (logit, probit, etc. for any precision) will have intersections at probabilities below 

1/2 for this game, i.e. for this particular expected payoff difference line. For the battle of sexes 

game represented in the bottom panel of Figure 3, changes in precision can make the scaled 

distribution line sharper or flatter, but all possible symmetric QRE intersections are located 

between the 0.5 midpoint probability and the Nash mixed probability of 0.25 (as indicated by the 

darker shading along the vertical axis).  Finally, it is important to point out that QRE is not 

necessarily a parametric theory, although particular parametric (logit or probit) implementations 

are typically used for purposes of estimation.  The empirical content comes from the monotonicity 

of the F function and the requirement that F(0) = ½, which ensures that decisions with higher 

payoffs are used more frequently. 
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 Graphical representations help to establish an intuitive feel for how the QRE configurations 

change as precisions and payoffs change.  Spreadsheets with fixed references to parameters that 

can be altered are also useful.  To construct the graphical representations used in Figure 3, the first 

step is to calculate the payoff differences.  The row player’s expected payoff for choosing D1 in 

the top row of Table 1 is pa + (1–p)b, and the expected payoff for choosing D2 is pc + (1–p)d, so 

the expected payoff difference between D1 and D2, denoted by x, is:  x = Δ(p) =  p(a – c + d – b) 

+ b – d.   Thus for each value of x on the horizontal axis in Figure 3, the vertical coordinate of the 

payoff difference line would be obtained by solving for p as a function of the x on the horizontal 

as is:  p = Δ–1(x) =  (x + b – d )/ (a – c + d – b).  The spreadsheet graph is then constructed by 

creating a column of x values going from –20 to +20, and then adding a second column with the 

above formula for the inverse payoff difference: Δ–1(x), with cell references to payoff parameter 

specifications.  The final step is to add a third column for the distribution function F(λx), with a 

cell reference to the precision parameter.  For a logit equilibrium, the distribution would be 

determined by the logit distribution in (4):   p = 1/(1 + exp(–λx)).12  These three columns can then 

be used to construct a figure with the logit distribution and expected payoff difference lines, where 

QRE points lie at the intersection(s). 

To summarize, quantal response equilibrium with standard assumptions about errors does 

have empirical content in the sense that it places restrictions on the range of possible choice 

frequencies.  The use of normal or exponential disturbance distributions results in probit or logit 

QRE, each with a precision parameter that determines the degree of curvature in the better response 

lines, and the i.i.d. assumption ensures that they will pass through the midpoints (0, 0.5) of the 

Figure 3.  Alternatively, one could use the symmetric structure of the distribution F(•) to derive 

comparative statics results without making specific parametric distributional assumptions.  This 

is analogous to specifying “reduced form” quantal response functions that satisfy basic continuity, 

responsiveness and monotonicity axioms (Goeree, Holt, and Palfrey, 2005), which ensure that they 

pass through the center (0, 0.5) points.  The general structure of these qualitative predictions 

depends whether the expected payoff difference line is negatively sloped, as in Figure 3, or 

positively sloped, as would be the case where cooperation by one player enhances the other’s 

incentives to cooperate.  As shown in the sections to follow, sometimes QRE exhibits a “pull to 

                                                           
12 This procedure is justified by inverting  x = Δ(p) to get  p = Δ–1(x)  and then substituting this into (3) to get   Δ–1(x) 

on the left side and  F(λΔ(p)) =  F(λΔ(Δ–1(x))) =  F(λx) = 1/(1 + exp(–λx)) on the right.   
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center” in which probabilities are pulled away from Nash predictions toward probabilities of 0.5.  

In other games, QRE will exhibits a “pull to extremes” in the sense that basins of attraction tend 

to confer stability properties on QRE that have relatively high or low probabilities as compared 

with a Nash mixed-strategy prediction.  

IV. Symmetric N-Person Binary Decision Games: Application to the Volunteer’s Dilemma  

 The methods used in the previous sections can be applied to symmetric N-person games 

with a binary choice, e.g. contribute or not, choose high effort or not, etc.  Here we focus on 

symmetric equilibria, so that beliefs about the other players can be represented by a probability, p, 

which is used to determine a player’s expected payoffs for each of the two decisions.  The 

difference in expected payoffs, denoted by Δ(p) = 𝜋1(𝑝) − 𝜋2(𝑝),  determines the QRE when it 

crosses the scaled inverse distribution of the error difference, as in (6).  The added complexity here 

is that payoff functions (and their differences) depend on the number of other players, N−1, as is 

the case for the volunteer’s dilemma game to be discussed next. 

   Consider a situation in which it only takes one volunteer to provide a public good for 

everyone, e.g. one person who is willing to attempt a risky rescue or one legislator who is willing 

to “take the heat” and propose a pay raise for all.  There are N players, and each person’s payoff 

is an amount V if at least one person volunteers (decision D1), minus a cost C < V of volunteering 

for anyone who does so.  If nobody volunteers, then all earn a low payoff of 0. Since volunteering 

is costly, C > 0, each person would prefer that someone else volunteers.  On the other hand, if 

nobody else is going to volunteer, then a player would prefer to volunteer since the benefit of V 

exceeds the individual cost of volunteering: V > C.  Note that the expected payoff from 

volunteering is a constant, 𝜋1 = 𝑉 − 𝐶, since there is at least one volunteer in this case.  The 

expected payoff from not volunteering (in a symmetric equilibrium with a volunteer probability p) 

is the value V times the probability that at least one of the others volunteers: 𝜋2 = 𝑉[1 −

(1 − 𝑝)𝑁−1].  The difference between volunteer and no-volunteer payoffs is a function of the 

number of other players: Δ(𝑝)  =  𝜋1 − 𝜋2  =  𝑉(1 − 𝑝)𝑁−1 − 𝐶, which is linear when N=2 as 

shown by the straight, negatively-shoped dashed line in Figure 4, using parameters V=.8 and 

C=0.2.  For higher numbers of players, the payoff differences are reduced as the dashed/dotted 

lines become increasingly curved.   
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Figure 4.  QRE for a Volunteer’s Dilemma with Various Numbers of Players    
The curved distribution line is drawn for the logit precision estimated by Goeree, Holt and Smith (2017), and the 

expected payoff difference lines are for the parameters used in that paper.  The intersections (open circles) are the 

QRE, which are pulled towards the center relative to the Nash equilibria (diamonds) at the intersections of the expected 

payoff difference lines and the vertical (sharp) best response line.  So the QRE volunteer rate is below the Nash 

prediction of 0.75 for N = 2 (as shown by the darker shading along the vertical axis), and it is above the lower Nash 

predictions for higher numbers of players.  As the number of players goes to infinity, it is apparent from the lower left 

part of the figure that the QRE probability will not go below 0.1.  This lower bound (for a fixed logit precision) will 

cause the probability of getting no volunteers at all to go to zero, which is consistent with intuition and experimental 

evidence, but inconsistent with Nash predictions derived from equilibrium volunteer rates that do go to zero as N 

becomes large.  

   

In a mixed-strategy Nash equilibrium, p*, the expected payoffs for volunteering and not 

volunteering must be equal in order for players to be willing to randomize. That is, the following 

equation must be satisfied: 

𝐶 =  𝑉(1 − 𝑝∗)𝑁−1 

Therefore, the Nash equilibria are indicated by the dark diamonds in Figure 4 on the vertical line 

above a payoff difference of 0.  This vertical line, of course, corresponds to a “sharp” distribution 

function with no dispersion, which illustrates the connection between Nash equilibria and a limit 

of quantal response equilibria.  With a finite precision, λ, the “S-shaped” distribution line shows 

some curvature as it passes through the midpoint (p = 0.5 with a zero payoff difference), as required 

by the i.i.d. assumption on the payoff disturbances (e.g. logit, probit, etc.).  The intersections with 

the payoff difference lines at the small circles are the QRE for various group sizes.  Note that the 

QRE prediction for N = 2 is below the Nash prediction of 0.75, whereas the QRE predictions are 
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above Nash predictions for the larger groups.  This pull-to-center effect would be observed for any 

parameterization that satisfies the i.i.d. assumption. 

It is apparent from the figure that as N goes to infinity, the Nash equilibrium volunteer 

probability goes to zero (as the diamond intersections on the zero-payoff-difference line get lower).   

Of course, having more players tends to work in the other direction, so the net effect of increasing 

group size on the chances of getting a volunteer is unclear.  In fact, this Nash volunteer probability 

goes to zero so quickly that the probability of getting a no-volunteer outcome is increasing in the 

number of players.  In other words, the Nash prediction is that a no-volunteer outcome is more 

likely in a large group.13  This unintuitive prediction was not observed in a laboratory experiment 

in which no-volunteer outcomes diminished steadily as the group size increased from 3 to 12.  

(Goeree, Holt, and Smith, 2017).  In contrast, for any given precision λ, the QRE volunteer rate is 

bounded away from zero (at a level of about 0.1 where the curved distribution line reaches the 

payoff difference of −0.2 on the left side of Figure 4).  This lower bound on the volunteer rate 

ensures that the QRE probability of getting at least one volunteer goes to 1 for large numbers of 

players, or equivalently, the probability of a no-volunteer outcome goes to zero.   The intuition is 

that there is always some residual noise, even with large groups, and this noise tends to increase 

the chances of getting at least one volunteer.  Similarly, the incorporation of noise in equilibrium 

models improves predictions in other experiments in which only a single decision is needed to 

generate a specific outcome, e.g. voting to acquit on a jury subject to unanimity (see the discussion 

and references in Goeree, Holt, and Palfrey, 2016, chapter 7). 

Empirical Content of QRE in the Volunteer’s Dilemma:  For each particular group size, it is 

apparent from Figure 4 that the QRE predictions lie between the Nash prediction and 0.5, a “pull-

to-center” effect that was present for all four group-size treatments with predictions that differed 

from 0.5.  Therefore, if the data average were outside of this range between Nash and 0.5, it would 

be impossible to find a precision that generates a perfect fit, even for a single treatment.  For a 

group size of 2, for example, the straight dashed expected payoff difference line passes through 

the “northeast” shaded rectangle over a range of p values between 0.75 and 0.5 (the dark shading 

along the vertical axis). The empirical content for the volunteer’s dilemma game is sharpened by 

                                                           
13 To verify this unintuitive property, set the payoff difference equal to zero and solve for (1 − 𝑝)𝑁 to obtain 

(1 − 𝑝)𝑁 = (𝐶/𝑉)𝑁/(𝑁−1) which is increasing in N, with a limiting value of C/V. 
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the presence of data for a wide range of treatments that were used to estimate a single precision 

parameter.  Notice that these comparative statics predictions do not depend on any particular 

parametric form (logit, probit, etc.) of the quantal response function F, since any cumulative 

distribution resulting from i.i.d. disturbances would be increasing and would pass through the (0, 

½) point Figure 4. Moreover, the arguments just presented imply that the probability of no-

volunteer outcomes is decreasing for large groups, not increasing as implied by the Nash 

equilibrium.  In other words, there is no finite value of the precision parameter that would fit data 

that happened to conform to the Nash prediction pattern of a no-volunteer rate that is increasing in 

N. 

V.  Coordination Games and Multiple, Pareto-Ranked Equilibria 

A coordination game is one with multiple Nash equilibria, so that players have to solve the 

problem of coordinating on a preferred equilibrium.  For example, suppose that the incentive to 

defect unilaterally from the cooperative outcome in a prisoner’s dilemma (the c payoff in Table 2) 

is reduced to the extent that that there is no longer an incentive to defect, i.e. a > c.  In this case, 

the original cooperation outcome would constitute a second Nash equilibrium that is preferred by 

both players to the mutual defection equilibrium.  Coordination games have fascinated economists 

and game theorists, due to the possibility that players may fail to coordinate on the Pareto-preferred 

equilibrium.  This possibility is especially credible in games that require coordination among many 

players, e.g. if the failure of some to coordinate may increase the attractiveness of the “bad” 

equilibrium for others.  Malthus, for example, worried that a whole economy might become mired  

in a “general glut” that could be hard to escape.  One such game is the “weakest-link” game for 

which the payoff for each player is a function of the minimum of all players’ efforts.  Obviously, 

one player’s actions can weigh heavily on the others’ payoffs in this weakest-link or “minimum-

effort” game.  Laboratory experiments confirm that coordination on good equilibria is especially 

difficult with larger numbers of players in a weakest link game (Van Huyck, Battalio, and Beil, 

1990; Goeree and Holt 2003a and 2005a). 

Table 3 shows the payoffs for a two-person weakest link game for which decision D1 

corresponds to a high effort with a cost of 2C, and decision D2 corresponds to a low effort with a  

cost of C.  When both subjects choose low effort, the minimum is 1 unit, and they each earn V− C, 

as shown in the lower right box.  If Row unilaterally raises effort to the high level, the effort cost 

goes up, but the minimum stays low, so the lower right box is a Nash equilibrium.  Alternatively, 



22 
 

when both choose a high effort, the minimum is high and they each earn 2V −2C, as shown in the 

upper left box of Table 3.  Starting at this good outcome, a unilateral effort reduction by Row 

would lower both the minimum effort and the cost, i.e. Row’s payoff would fall from 2V −2C to 

V –C. Thus a unilateral effort reduction from the high-effort equilibrium is not profitable.  The 

dilemma is that low effort for both is also Nash equilibrium. The payoffs are twice as large for 

each if they both choose high effort, but there is no risk in choosing low effort.  In addition to the 

two pure-strategy Nash equilibria at high or low effort levels, there is also a mixed-strategy Nash 

equilibrium at an intermediate probability of high effort, p, which equates the expected payoffs of 

the two effort choices. 

Table 3. Weakest Link (Minimum Effort) Coordination Game (V > C > 0)  

  Column Player 

  D1 (high) D2 (low) 

Row 

Player 

D1 (high)  2V−2C,   2V−2C     V−2C,    V−C 

D2 (low)      V−C,    V−2C       V−C,    V−C 

 

Figure 5 shows the previously discussed decomposition of the dashed expected payoff 

difference line and the curved (λ-scaled) distribution line, the intersections of which determine 

quantal response equilibria (circles in the figure).  Note that the expected payoff difference line for 

a two-player coordination game has a positive slope, which reflects the intuition that a higher 

probability that the other player chooses high effort raises the payoff difference for a choice of 

high effort.   The game being represented has an effort cost of C = 0.4 and a value of V = 1.  The 

dashed expected payoff difference line starts at −0.4 on the horizontal axis because when the other 

chooses high effort with probability 0 (bottom of figure), an extra unit of effort has no effect on 

the minimum; it just reduces one’s payoff by 0.4.  Conversely, when the other player chooses high 

effort, p = 1, a switch to high effort raises the minimum effort and the cost, for a net gain of V – C 

= 1 – 0.4 = 0.6, as shown by the intersection of the dashed line with the top of the figure. 

As indicated from the previous analysis of equation (4), the quantal response equilibria 

correspond to intersections of the curved distribution line and the dashed expected payoff 

difference line.  In Figure 5, the circle at the top is for the outcome where both players choose high 

effort with a probability that is close to 1, and the circle at the bottom is for the other equilibrium 
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where the probability of high effort is close to 0.  The middle QRE circle in the figure is near the 

Nash mixed equilibrium, which is at the intersection of the expected payoff difference line and the 

vertical line at a payoff difference of 0 that makes a player indifferent and willing to randomize. 

This illustrates the general tendency for QRE points to be near Nash equilibria when precision is 

relatively high (Goeree, Holt, and Palfrey, 2016 chapter 1, and references therein).  

 

Figure 5.  A 2-Player Minimum Effort Coordination Game with V = 1 and C = 0.4    

The expected payoff difference (for choosing high effort instead of low effort) is shown on the horizontal axis, and 

the probability p that the other player chooses high effort is shown in the vertical axis.  The straight dashed line shows 

the expected payoff difference for high effort as a function of p for the case of N = 2 players.  The slope of this expected 

difference line is positive, since a higher probability that the other chooses high effort raises the expected payoff gain 

of switching to high effort.  The QRE points are at the intersections of the payoff difference line and the curved 

distribution line.  Two of these equilibria (the circles near the top or bottom boundaries) represent the high-effort and 

low-effort QRE outcomes.  The thin dashed line shows the rightward shift in the expected payoff difference resulting 

from a reduction in the effort cost. 
 

The λ-scaled distribution line in Figure 5 is drawn with a specified level of the disturbance 

precision λ.  A lower precision would result in a flatter line, which would move the two extreme 

QRE circle predictions inward, away from the Nash equilibria where the probability of high effort 

is either 0 or 1.  In fact, a sufficiently low precision could cause the distribution line to flatten out 

so that there is only one intersection with the payoff difference line, at a probability below 0.5.  In 

other words, the QRE with a relatively high probability of high effort may vanish for sufficiently 

low precision levels.  This is consistent with intuition that coordination on a high effort equilibrium 

is difficult in the presence of noise that increases the risk of choosing high effort. 

There is a simple intuition suggesting that the middle QRE point in Figure 5 (at a high 

effort probability of about 0.37) could be unstable.  For example, beginning at a probability of 0.5 

in the center of the figure, move to the dashed line to the right to determine a positive payoff 
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difference.  Then move up vertically to the curved probabilistic response for this positive payoff 

difference, which is much higher than 0.5.  This intuition suggests that if choice proportions start 

near 0.5, the incentives to choose high effort will cause quantal responses to raise the proportion 

of high effort decisions, as suggested by the upward arrows shown in that region.  The converse 

reasoning applies for probabilities that are below that of the middle QRE circle in the figure, i.e. 

so quantal responses tend to pull probabilities down in this region. In effect, the middle QRE 

determines the basins of attraction for the extreme, high-effort or low-effort QRE. In this case with 

two players, the high-effort QRE has a larger basin of attraction.  The instability of the middle 

QRE point is consistent with the unintuitive comparative statics for that point.  For example, a 

reduction in the cost of effort might be expected to increase the probability of a high-effort 

decision.  But a decrease in C raises the expected payoff differences and shifts the payoff difference 

line to the right in Figure 5 (the thin dashed line).  This shift causes the middle QRE intersection 

to be at a lower probability of high effort.  What is intuitive is that a reduction in the cost of effort, 

by lowering the middle QRE point, will increase the basin of attraction for the high-effort QRE 

point. 

With N players, a high-effort decision results a sure cost of 2C.  A high common effort 

outcome only results if all others choose high effort, which happens with probability pN-1. A low-

effort yields a sure payoff of V−C.   In this case, the expected payoff difference function is:  𝛥(𝑝) =

𝑉𝑝𝑁−1 − 𝐶,  since adding a unit of effort may possibly raise the value received, but surely raises 

the cost.  This payoff difference function for N = 3 will be quadratic, as shown as the dashed line 

in Figure 6.   For these parameters with C = 0.4 and V−C = 0.6, the expected payoff difference 

line still passes through the points (−0.4, 0) and (0.6, 1), as was the case for 2 players. But the 

expected payoff line is located to the left for intermediate probabilities, since the probability that 

the minimum of other’s efforts is high is decreasing in the number of other players.  As before, 

there are three QRE equilibria (circles in the Figure 6), one near the upper boundary, one near the 

lower boundary, and an intermediate equilibrium that is unstable and that delimits the basins of 

attraction.  An increase in the number of players would increase the basin of attraction for the low-

effort equilibrium, as would be suggested by simple intuition about the increased difficulty of 

coordination for a larger number of players. 
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Figure 6.  A 3-Player Weakest Link Coordination Game with V = 1 and C = 0.4    

With 3 players, the expected payoff difference depends on the probability that both other players choose high effort, 

which is p2.  This nonlinearity causes the expected payoff difference line to have curvature, as shown by the “dot-

dash” line.  This line has shifted up and to the left relative to the straight dashed line for N = 2, although the expected 

payoff intercepts at the top and bottom of the figure are the same.   As before, the QRE points are at intersections 

between the expected payoff difference line and the curved distribution line.  There is one QRE with relatively low 

effort (circle intersection near the bottom), another with relatively high effort (circle near the top), and an unstable 

QRE with an intermediate probability.   Notice that the quantal responses are below the payoff differences anywhere 

to the left of the unstable QRE point, which tends to pull the probability of high effort down.  Thus the increase in the 

number of players has increased the region of attraction for the low-effort QRE.   

Empirical Content of QRE in Coordination Games:  Recall that the curved line in Figures 5 and 6 

is the λ-scaled distribution of the difference in payoff disturbances.  This distribution function must 

be upward sloping and pass through the “+” at the center of each figure.  This point at (0, 0.5) is 

where the cumulative probability is 0.5, reflecting the i.i.d. assumption that neither of the 

disturbances is more likely to be larger than the other one.  As precision becomes smaller, the 

scaled distribution line becomes flatter, but since it is non-decreasing, it can only pass through the 

points in the light shaded areas.  Thus the distribution line can never intersect with the payoff 

difference line in the region to the “southeast” (down and to the right) of the “+” at the center of 

Figure 6, or to the “northwest” (up and to the left).  With 2 players, the standard i.i.d. assumption 

about disturbances precludes any QRE in this region, at probabilities between about 0.4 and 0.5 as 

shown where the light thin dashed line passes in the open between the two shaded rectangles in 

Figure 6.  Similarly a non-decreasing cumulative distribution cannot intersect the payoff difference 

for the case of N = 3 at any probability between 0.5 and about 0.65 in the 3-person coordination 
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game.  To summarize, when the expected payoff difference line is positively sloped, as in 

coordination games, for plausible values of lambda, the standard i.i.d. assumptions preclude QRE 

in probability ranges close to .5 (in one direction or the other), just as the “pull to center” QRE 

tendencies with negatively sloped expected difference lines tend to rule out QRE that are located 

in regions closer to the extremes of 0 or 1.  Finally, note that coordination on high efforts is more 

difficult with more noise, more players attempting to coordinate, and with a higher cost of effort. 

VI. Games with Asymmetric Equilibria 

 In an asymmetric equilibrium, each player’s choice probability will be determined by the 

player’s beliefs about the other’s decision.  In a Nash equilibrium, the choice probabilities for each 

player will be best responses to beliefs about the other’s decision.  The associated best response 

lines will have sharp edges, with Nash points at the intersections.  In a quantal response 

equilibrium, each player’s choice probability will be a noisy response, which can be represented 

by a curved quantal response line for each player.  With two players and two decisions, the QRE 

probabilities are located at the intersection of the players’ quantal responses.  As precision 

decreases, curvature increases, which can move the QRE point away from Nash in the presence of 

payoff asymmetries. 

 Table 4 represents a matching pennies game, in which Row prefers a match on Heads or 

Tails, and Column prefers a mismatch. This game is highly asymmetric because the Row player 

prefers matching on Heads to matching on Tails.  Payoffs would be symmetric if the 10 were 

reduced to 2, in which case the Nash equilibrium would be for each player to randomize with 

probabilities of 1/2 for each decision.  But if Row’s Top/Left payoff is 10 as in the table, the Row 

player must still randomize by choosing Top with probability of only 1/2 in order to keep Column 

indifferent and willing to randomize.  This stark Nash equilibrium prediction of no “own-payoff 

effect” is not supported by laboratory experiments with random matching.  Instead, Row players 

tend to choose Top more often than Bottom (Ochs 1995, Goeree, Holt, and Palfrey, 2003).   

Table 4. Asymmetric Matching Pennies Game  

  Column Player 

  Left (Heads) Right (Tails) 

Row 

Player 

Top (Heads)        10     1      1        2 

Bottom (Tails)        1        2      2        1 
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Consider the best response for Column, shown as a dashed line in the left panel of Figure 

7.  The symmetry of Column’s payoffs imply that it is a best response to switch from Left to Right 

as Row’s probability of Top crosses ½, as indicated by the dashed line in the left panel of Figure 

7.  A quantal response function would be smoother, represented by a curved line that would lie 

somewhere in the lower shaded area to the left of ½ and in the upper shaded area to the right. 

 

Figure 7.  Best Response Lines for a Matching Pennies Game: Column Player (Dashed Lines) 

and Row Player (Solid Lines), with Shading for Possible Locations of Quantal Responses   

As the precision decreases, the sharp dashed best response for the Column Player will flatten out into quantal 

responses, but it will stay in the horizontal shaded regions in the left pane.  Similarly, the vertical shaded regions in 

the right panel show the possible locations of the quantal responses for the Row Player. 

Conversely, in order to make Row indifferent in this asymmetric game, Column must 

choose Right with probability 0.9, as shown by the Row’s vertical solid best response line in the 

right panel of Figure 7.   For probabilities of Right below 0.9, Row’s best response is to choose 

Top for sure, as shown by the best response line in the right panel of Figure 7 that comes across 

the top of the panel and then drops to 0 when the probability of right equal to 0.9, at which point 

Row’s expected payoffs for each decision are equal. With some noise, the best response line is 

replaced by a smoothed line that starts somewhere the upper left shaded area and crosses to the 

lower right shaded area.   

If there is an i.i.d. payoff disturbance associated with the expected payoff for each decision, 

then the quantal responses can be represented by scaled distribution functions F of the expected 

payoff difference, Δ(p) that depends on beliefs about the other player’s decision, i.e. Row’s beliefs 
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about Pr(Right) and column’s beliefs about Pr(Top).  These quantal responses are shown in 

equations (7) and (8), with the logit  specification shown after the second equal sign:   

(7)         𝑝𝑇𝑜𝑝    =   𝐹(𝜆Δ𝑅𝑜𝑤(𝑝𝑅𝑖𝑔ℎ𝑡)   =  
exp(𝜆𝜋𝑇𝑜𝑝(𝑝𝑅𝑖𝑔ℎ𝑡))

exp(𝜆𝜋𝑇𝑜𝑝(𝑝𝑅𝑖𝑔ℎ𝑡))+exp(𝜆𝜋𝐵𝑜𝑡𝑡𝑜𝑚(𝑝𝑅𝑖𝑔ℎ𝑡))
 , 

(8)         𝑝𝑅𝑖𝑔ℎ𝑡  =  𝐹(𝜆Δ𝐶𝑜𝑙𝑢𝑚𝑛(𝑝𝑇𝑜𝑝) =  
exp(𝜆𝜋𝑅𝑖𝑔ℎ𝑡(𝑝𝑇𝑜𝑝))

exp(𝜆𝜋𝑅𝑖𝑔ℎ𝑡(𝑝𝑇𝑜𝑝))+exp(𝜆𝜋𝐿𝑒𝑓𝑡(𝑝𝑇𝑜𝑝))
 , 

In a QRE, the  pTop and pRight beliefs on the right sides of (7) and (8) must match the choice 

probabilities on the left, so the QRE is obtained by solving these two nonlinear equations.  This 

solution can be represented by an intersection of quantal response lines in Figure 8.  Those 

particular curves represent the logit quantal response functions, for the specific value of the 

precision parameter, λ, that was estimated from laboratory data of two asymmetric matching 

pennies games, one shown in Table 4 and a second treatment where the 10 payoff was reduced to 

10/9.  The data average is represented as the hollow dot “10 data” in  the figure. Even though the 

QRE prediction is not perfect for the 10 treatment, it is qualitatively similar in terms of the 

observed frequency of Top being significantly above the 0.5 Nash prediction, and the observed 

frequency of Right being significantly to the left of the Nash prediction of 0.9.  In other words, the 

QRE exhibits the own-payoff effect of the high 10 payoff that is apparent in the data but not 

implied by a Nash equilibrium.  

 Finally, the shaded area in Figure 8 represents the intersection of the shaded regions of the 

two panels of Figure 7.  In order to reach all parts of the shaded regions in Figure 8, one would 

need to have the flexibility to choose one precision for Row and another for Column.  Since roles 

in the experiment are randomly assigned, it is better to model the precisions as being the same, 

which would sharply restrict the shaded region of possible QRE equilibria in Figure 8.  For any 

specific parametric specification, the locus of QRE points would start at the central point of the 

figure (0.5, 0.5) as precision goes to 0, rise into the shaded region, and would end up at the Nash 

mixed equilibrium (0.9, 0.5) as precision goes to infinity (dotted arc in Figure 8).  The locus of all 

logit QRE points with a single precision parameter is a curved line, not an area. 
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Figure 8.  Best Responses (Straight Lines) and Quantal Responses (Curved Lines) for the 

Column Player (Dashed Lines) and Row Player (Solid Lines).   

The curved quantal response lines will intersect in the shaded area, which is the intersection of the shaded sets in 

Figure 7.  This set illustrates the fact that QRE does have empirical content in this game when payoff disturbances are 

i.i.d. The particular curved quantal response lines shown are for a precision that was estimated using data from two 

different matching pennies games.  The intersection of the quantal response lines is above and to the left of the Nash 

equilibrium (hollow diamond).  The hollow dot (marked “10 data”) shows the average of the proportions of Top and 

Right for Row and Column players respectively in an experiment.  Thus QRE explains the qualitative nature of the 

deviations from the Nash prediction.  In particular, the Row player is responsive to the high payoff of 10 for a Top/Left 

outcome, and therefore, the Row player chooses Top more often.  The arc of small dots shows the locus of all QRE 

points when disturbance precisions for each player are constrained to be equal. 

Empirical Content of QRE in Matching Pennies Games:  If payoff disturbances are i.i.d. (e.g. logit, 

probit, etc.) then the set of possible QRE equilibria for the asymmetric matching pennies game in 

Table 4 is the shaded set in Figure 8.  Goeree et al. (2019) generalizes this nonparametric restriction 

implied by QRE for arbitrary finite games and show that the relative measure of the shaded region 

is bounded above by 1/K!, where K is the number of available actions in the game for a player.  

That set is further restricted if the payoff disturbances are identically distributed according to a 

specified parametric distribution, e.g. logit with the same precision, in which case the set of 

possible QRE is a line not an area.  As always, empirical content is further sharpened when 

multiple treatments with different payoff parameters are used, e.g. Holt and Palfrey (2020). 
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VII. Quantal Response Equilibrium in Extensive Form Games: The Centipede Game 

 Many games of interest – for example, signaling games, repeated games, and multistage 

bargaining games – have a timing structure that is not captured in the strategic-form representation. 

Importantly, subgame perfection and sequential rationality lead to strong restrictions on 

equilibrium behavior, and are appropriately analyzed as games in extensive form. McKelvey and 

Palfrey (1998) develop the theoretical framework for QRE in extensive form games, calling it 

Agent Quantal Response Equilibrium (AQRE).  The terminology is due to the fact that a player’s 

decisions at subsequent decision nodes are modeled as being decisions of a noisy “agent” subject 

to payoff disturbances at those future nodes.  While the formal development of the theory is 

complicated, it is easy to describe for multistage games of perfect information. Consider, for 

example, the logit AQRE. Starting from the final stage, the last player chooses stochastically 

according to the logit quantal response function with precision parameter λ at each information set, 

where the outcomes of the player’s possible choices are known quantities, so no expectation over 

other players’ action choices are necessary at this last stage. This, in turn defines the expected 

payoffs for all available actions at each information set for the next-to-last player. That player then 

logit quantal responds in the next to last stage. In this manner, the game is solved “backwards” 

until the initial stage. 

 This basic idea extends in a natural way to any extensive form game with perfect recall. At 

each information set for each player, a player’s “continuation expected payoffs” (for each available 

action at that information set) are calculated using the distribution over the terminal payoffs based 

on the future quantal responses of all players at all information sets following that move. The 

formal structure is laid out in McKelvey and Palfrey (1998).  This backward induction process 

guarantees that the limits of AQRE, when λ goes to infinity, are sequential equilibria of the 

underlying game, so AQRE imposes a quantal response version of sequential rationality.  Because 

the quantal responses are strictly interior, in any AQRE, every information set is reached with 

positive probability. Thus, unlike the standard equilibrium analysis of extensive form games, there 

is no need to arbitrarily assign beliefs to unreached information sets, where Bayes’ rule fails to 

apply. Instead, Bayes rule applies everywhere in the game, thereby completely avoiding any issues 

related to belief-based “refinements” of the Nash equilibrium. 
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We next illustrate the quantal backward induction method for the 4-stage centipede game 

shown in Figure 9. In each stage of this game, the player moving at that stage chooses to either 

“pass” the game to the next stage, or to “take” and receive a payoff that is four times the payoff of 

the other player. The take decisions are shown as down arrows and the pass decisions are shown 

as arrows to the right.  For example, player 1 decides first at the left node, and a take (down arrow) 

at that point results in payoffs of 40 for player 1 and 10 for player 2.  Notice that if a player chooses 

pass, the payoff amounts double and are switched. It is as if unequal money amounts are passed in 

a tray, with the person making the decision deciding to take the higher amount or pass, which 

doubles the money amounts but offers the other player the chance to take the higher amount.  If 

nobody has taken in the first four stages, the game ends with “pass” payoffs of (640, 160) for 

players 1 and 2 respectively, as shown on the right side of the figure.  McKelvey and Palfrey (1992) 

studied behavior in this game and in a 6-stage extension (with payoffs in pennies) of  (640, 160) 

for a take stage 5, (320, 1280) for a take in stage 6, and with the final “pass” payoffs being (2560, 

640) for players 1 and 2 respectively. 

 

Figure 9.  4-Stage Centipede Game and Observed Take Rates (McKelvey and Palfrey, 1992).   

Player 1 begins at the node on the left by choosing between Take (down arrow) and Pass (right arrow), where a take 

results in payoffs of 40 cents for player 1 and 10 for player 2.  At the second node, player 2 chooses between Take 

(down) and Pass (right), and decisions alternate if the game continues.  The bottom row shows rates of take decisions 

observed by McKelvey and Palfrey, which increase steadily from 0.07 in the first stage to 0.75 in the final stage.   

All Nash equilibria in the centipede game (and there is more than one) involve player 1 

taking in the first stage. There is a unique sequential equilibrium where each player takes whenever 

it is their move. Behavior observed in laboratory experiments is far different. The top part of Table 

5 displays the empirical relative frequencies at which players were observed to choose take at each 

stage, t, denoted by qt. The striking pattern in the data is the strong “horizon effect,” observed in 

both treatments: take probabilities start near zero and increase dramatically as the game progresses 

and the final stage is approached.  
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Table 5.  Take Rates in 4- and 6-Stage Centipede Games:  

Observed (McKelvey and Palfrey, 1992) and Luce QRE Fitted Rates with λ=1.16 

Take rates: q1 q2 q3 q4 q5 q6 

4-move observed: 0.07 0.38 0.64 0.75 - - 

6-move observed: 0.007 0.065 0.21 0.53 0.73 0.85 

4-move fitted Luce: 0.16 0.27 0.37 0.69 - - 

6-move fitted Luce: 0.05 0.10 0.16 0.27 0.37 0.69 

 

Zauner (1999) and McKelvey and Palfrey(1998) used the observed take rates to estimate a 

quantal response precision parameter using different specifications of the quantal response 

functions.14  In a logit QRE, for example, increases in the payoff differences between take and pass 

in later stages of the centipede game would result in higher take rates in later stages, essentially 

moving up along a fixed lambda-scaled cumulative distribution function in the earlier Figures 1-

4.  Recall that the take payoffs double (and switch) in each subsequent stage of the centipede game 

in Figure 9.  Since logit choice probabilities are constructed from ratios of exponential functions 

of expected payoffs, a doubling of all payoffs that doubles all expected payoffs is analogous to 

doubling the logit precision, as can be seen from the location of the 2 numbers adjacent to the 

precision λ in (9).  

(9)         𝑝 =   
exp (𝜆2𝜋1(𝑝))

exp (𝜆2𝜋1(𝑝))+exp(𝜆2𝜋2(𝑝))
   (logit with doubled payoffs). 

This observation suggests that behavior should become much more precise in later stages of the 

centipede game.  In contrast, note that the take rate in the final 4th stage in Figure 9 is only 0.75.  

An alternative to the logit form that is sometimes used when payoff scale changes are large is the 

Luce probabilistic choice rule: 

(10)         𝑝 =   
(𝜋1(𝑝))𝜆

(𝜋1(𝑝))𝜆+ (𝜋2(𝑝))𝜆     for λ > 0  (Luce power rule), 

                                                           
14 Zauner used a probit quantal response function based on normally distributed payoff disturbances, while McKelvey 

and Palfrey used the logit quantal response function. 
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where λ= 0 implies extreme noise and choice probabilities of 0.  Notice that this choice function 

is invariant to uniform changes in payoff scale, e.g. doubling.  Thus the Luce rule implies that 

choice probabilities depend on ratios of expected payoffs, not on differences.15  Next we illustrate 

the use of the Luce rule in the context of the centipede game. 

An AQRE for the 4-move game is a sequence of take probabilities, (q1*, q2*, q3*, q4*).  At 

stage j, where qj* is a quantal response to the expected payoffs from the take decision to the player 

moving at that stage, given the take rates, qk*, for all subsequent stages  k > j.  At stage 2, the 

quantal response for the Luce power rule (10) is constructed as a ratio of terms, each of which is a 

payoff raised to the power λ:  

 (11)         𝑞2
∗ =

(80)𝜆

(80)λ+[40𝑞3
∗ + (1−𝑞3

∗)(320𝑞4
∗∗+160(1−𝑞4

∗))]
λ    (Luce rule for stage 2). 

The numerator in (11) is the payoff for player 2 from take, 80, raised to the power λ, and the 

denominator is the sum of that term and a second term that represents the expected payoff from 

passing, also raised to the power λ. The best fitting precision value for the take-rate data shown in 

the top part of Table 5 is λ=1.16, generating predicted take probabilities as shown in the bottom 

part  of Table 5. Notice that the qualitative horizon effect observed in the top part is clearly captured  

in the estimates shown in the bottom part. 

It is also instructive to look at the entire power Luce “QRE correspondence” for these two 

games, shown in Figure 10.  Begin on the left with a zero precision (perfect randomness), which 

causes all take probabilities to be 0.5.  The figure shows that convergence to the unique subgame 

perfect equilibrium, even in games of perfect information, is not necessarily monotone in λ.  Only 

q4* converges monotonically to 1, because a pass at node 4 is a strictly dominated strategy. In 

contrast, q1*, q2*, and q3* initially decrease because for low values of λ there is sufficient noise in 

the future play of the game such that passing yields a higher expected payoff, so the associated 

take rate is below a half. For all strictly positive precision values, however, the lowest take rate is 

in first stage (dark thick line) and take rates are higher at each subsequent stage (lighter lines), so 

                                                           
15 This rule, which requires that payoffs be non-negative, can be derived by assuming that random payoff perturbations 

are multiplicative with mean 1, instead of additive with mean 0 (Goeree, Holt, and Palfrey, 2016, chapter 1).  With 

multiplicative disturbances, decision 1 is selected if  𝜋1𝜖1𝑗
1/𝜆 > 𝜋2𝜖2𝑗

1/𝜆 , where a high λ results in essentially no 

noise, and the disturbances perturbations are non-negative and i.i.d. with median 1.  Then take the natural log of both 

sides of this inequality and multiply by λ.  If the cumulative distribution of the difference in log disturbances is 

exponential, then the equation analogous to (5) above involves exponentials of logs of power functions, which yields 

the ratio of power functions in (10). 
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each specific value of the precision parameter exhibits the same pattern of increasing take rates 

from stages 1 to 4.  Therefore, this correspondence shows how QRE captures the horizon effect 

for a wide range of λ values. The vertical dashed line is drawn at the best-fit value of λ, and the 

intersections with the curved lines show the resulting best-fit QRE predictions.   

Empirical Content of QRE in the Centipede Game: It is apparent from Figure 10 that a perfect fit 

for a single game would require 4 observed take rates to lie on the same vertical line, and the 

likelihood of a perfect fit for both 4-stage and 6-stage games together requires an additional 6 

intersection points to be arrayed on the same vertical line, which is generally impossible.  The 10 

fitted Luce predictions shown in the bottom rows of Table 5 (based on a single precision parameter) 

are obviously not perfect, but they do track the key qualitative features of deviations from the Nash 

prediction of take rates of 1 at all stages. 

 

Figure 10. Luce QRE Correspondence of Take Probabilities for the 4-Stage Centipede Game.   

With a precision of 0 on the left side, the take probabilities are all 0.5 (perfectly random).  For each positive precision 

value shown on the horizontal axis, the take probabilities increase from stage 1 (darkest line) to stage 4 (lightest line).  

A Luce precision parameter of  λ = 1.16, as indicated by the vertical dashed line, generates the best-fit take probabilities 

provided in the bottom part of Table 5 for this 4-stage game. 

VIII. Games with a Continuum of Decisions: Imperfect Price Competition 

Recall that a logit model is based on a binary choice probability expressed as a ratio of 

exponentials of expected payoffs, with 𝑒𝜆𝜋𝑖(𝑝) for decision i in the numerator, and with a sum of 

analogous exponentials for both decisions in the denominator. With a larger number of decisions, 

the denominator sum includes exponentials for each decision, to ensure that the resulting choice 
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probabilities sum to 1.  With a continuum of decisions on some range, say 0 to 100, the 

probabilities are densities, f(p), and the sum in the denominator is replaced with an integral:   

(12) 𝑓(𝑝) =  
𝑒𝜆𝜋(𝑝)

∫ 𝑒𝜆𝜋(𝑝ꞌ)𝑑𝑝ꞌ
100

0

 . 

The next example illustrates a key insight about QRE as an equilibrium theory, and as such, 

the effects of noise are not simply to spread decisions out around some central tendency.  There 

can be cascading feedback effects that push the distributions of decisions far away from a Nash 

equilibrium that would occur in the absence of noise.  Capra et al. (2002) report an experiment for 

a price competition game in which the unique Nash equilibrium was at the low end of the range of 

possible prices, but the data average for one of the treatments turned out to be about 70% of the 

way towards the high end of the price range.  The reader might wonder how QRE can explain this 

pattern, since in some previous applications the effect of noise has been to pull the QRE predictions 

towards the center.  In those games, the expected payoff difference line generally had a negative 

slope, e.g. it is better not to volunteer when the others volunteer with high probability.  In contrast, 

the payoff difference line for the price competition game to be considered next has a positive slope, 

i.e. increased cooperation stimulates additional cooperation.  In particular, when others tend to 

charge higher prices, a firm can earn more by raising price somewhat, so there can be a cascading 

upward pressure on prices due to equilibrium interaction effects.          

When there are many possible decisions, e.g. prices in pennies, it is convenient to model 

the game as having a continuum of choices.  For example, suppose that there are two firms that 

are constrained to choose prices in a range from 60 to 160.  Buyers will demand a total of 1 + α 

units of the product for prices in this interval, with the sales of the low-price firm normalized to be 

1, and the sales of the high-price firm being α < 1.  There were two treatments in the experiment, 

one very competitive, with α = 0.2, and the other much less competitive, with α = 0.8.  In this less-

competitive treatment, the high-price firm sells almost as much as the low-price firm.  Prices are 

chosen independently, but the high-price firm must match that of the low-price firm ex post, e.g. 

in a meet-or-release contract.  The delay due to the ex post price reduction is assumed to lower the 

sales quantity for the high-price firm. If prices are 90 and 100, for example, the firm with the 90 

price sells 1 unit, and the other firm only sells a fraction α after matching the low price of 90.  

Since α < 1, the low-price firm makes more money.  It follows that each firm has an incentive to 
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“undercut” the other, so the unique Nash equilibrium is at the minimum feasible price of 60.  Basic 

intuition, however, suggests that prices would be higher in the less competitive treatment.   

This intuition was confirmed in a laboratory experiment that implemented the imperfect 

competition game with zero costs, with a series of random matchings between subjects acting as 

sellers.  For the competitive treatment in which the high-price seller only sells a fifth as many units 

as the low-priced seller, the average price was 68, quite close to the Nash equilibrium of 60.  But 

for the less competitive treatment (α = 0.8), the average price was 121, almost about twice as high 

as the Nash prediction, and on the other side of the midpoint of the price range.  The cumulative 

distributions of observed prices, shown as sequences of dots in Figure 11, show a treatment 

difference that diverges from the sharp (dashed-line) Nash prediction for both treatments that puts 

all probability at the lowest feasible price.  

 

Figure 11.  Cumulative Price Distributions with Imperfect Price Competition    
The two sequences of dots show cumulative data distributions for the two treatments in Capra et al. (2002).  The dot 

sequence on the left is for the more competitive treatment (α=0.2), and the sequence on the right is for the less 

competitive treatment (α=0.8) that yields higher prices.  The Nash equilibrium price prediction of 60 for both 

treatments produces a sharp cumulative dashed line that follows the left and top sides of the figure.  The smooth 

curved lines show the QRE cumulative distributions calculated using the experiment payoff parameters, but with a 

logit precision parameter that was previously estimated for a continuous-choice social dilemma experiment (Capra et 

al. 1999).  The QRE densities can be used to calculate predicted price averages in a straightforward manner.  In the 

less competitive treatment, the logit QRE price average is 128, at about the same level as the average price of 121 

observed with human subjects in this treatment.  In the more competitive treatment, the logit QRE price average is 78, 

which is close to the observed data average of 69. 
 

One possible reaction to the high prices relative to the Nash equilibrium in the less competitive 

treatment is that it is “just behavioral,” a comment that we have heard on occasion.  We used to be 
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content with hanging this label on unexpected data patterns, but quantal response equilibrium 

offers a more general, theory-based approach that does not necessarily incorporate assumptions 

about behavioral biases.  The first step in the analysis is to express the expected payoff function 

for each possible price choice p, given a “belief” density f(pꞌ) that represents beliefs about the 

other’s price pꞌ.  With zero costs, this expected payoff is shown in equation (13), where the first 

term on the right side is the price received for selling 1 unit times the probability that that price is 

the low price, where F(p) is the cumulative of the belief density.  The second term is the fractional 

unit α that is sold for each of the possible lower values of the other seller’s price pꞌ, weighted by 

the belief density for pꞌ. 

(13) 𝜋(𝑝) =  𝑝[1 − 𝐹(𝑝)]  +  𝛼 ∫ 𝑝ꞌ𝑓(𝑝ꞌ)𝑑𝑝ꞌ
𝑝

60
 . 

In equilibrium, the choice density on the left side of (12) must be the same as the belief 

density that is used to determine the expected payoff function in (13).  The solution to the resulting 

nonlinear equations involves finding a fixed point for a discretized distribution.  The authors used 

a precision of λ= 0.12, estimated previously for a different game, to solve for the equilibrium QRE 

distributions that are shown in Figure 11.16   

Even though the discretized equilibrium computation involves finding a vector of 

probabilities that solve a large system of nonlinear equations, it is instructive to imagine a more 

mechanical, iterative approach. Consider a sequence of iterations, beginning with a flat (uniform) 

belief distribution on the price interval [60, 160] that is used to calculate expected payoffs and a 

resulting probabilistic (logit) response density.  That response density is then used as a belief 

distribution to generate a new logit choice distribution, etc.  Figure 12 shows such a sequence of 

noisy quantal responses to the initial flat beliefs (the dashed gray horizontal line), using the 

precision parameter λ estimated previously.  Notice that the sequence of densities is converging 

after several iterations.  The limit to this sequence is a quantal response equilibrium distribution, 

i.e. a distribution that is mapped into itself (beliefs match choice distributions).   

The flat beliefs used to start the iterative sequences in Figure 12 are sometimes referred to 

as “level 0” beliefs.  A “level 1” player, who believes that other decisions are pure noise, would 

                                                           
16 In particular, the precision estimate was taken from a prior “traveler’s dilemma” game experiment (Capra et al., 

1999) with a different payoff structure, but with the same subject pool and random matching protocol that was used 

subsequently in the imperfect price competition paper.   
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have a quantal response that will be called “noisy level 1”.  A level 2 player is one who believes 

that others are “noisy level 1,” etc.  The distributions at each level are not equilibrium distributions, 

since the “surprise” differences between choice and belief distributions would generate learning 

and a tendency to change.  Here we see the relationship between QRE (as a fixed point limit) and 

noisy quantal responses to lower level beliefs.  

 

 

Figure 12. Iterated Logit Quantal Responses with Less Severe Price Competition (Top Panel) 

or More Price Competition (Bottom Panel).  In each panel, an initial flat belief distribution (the horizontal 

dashed line) is used to calculate a logit quantal response density, which serves as the belief distribution for calculating 

a second logit quantal density, etc.  The iterated quantal responses converge to the quantal response equilibrium density 

in the top panel, with a peak at relatively high prices for this less competitive treatment.  For the more competitive 

treatment, the analogous sequence of logit response densities tends to “pile up” near the low end of the price scale.   

Empirical Content of QRE in Models with a Range of Decisions:  As the logit precision goes to 0, 

the probabilities collapse to a uniform level, so the average price prediction would be at the 

midpoint of the range of possible prices.  As precision increases, the price averages move around 
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in the range of possible decisions.  In the imperfect price competition model, for example, average 

prices first increase and later decrease towards the Nash prediction at the lower bound as precision 

goes to infinity.  Thus it could be possible to find a precision with an associated average QRE 

price prediction that exactly matches any observed data average in a wide range of prices.  This 

possibility fades with the inclusion of a second treatment.  Moreover, maximum likelihood 

estimates of the precision parameter are sensitive to the whole price distribution (a product of price 

probabilities, each raised a power equals the number of times that particular price is observed in 

the data).  The resulting fit is never perfect.  The only hope of getting a perfect fit for each of the 

cumulative distribution dots shown in Figure 11 would be to specify a separate precision for each 

possible price choice on [60, 160] for each treatment, for a total of over 200 parameters to be 

estimated.  In contrast, the predictions shown in the figure are for a single parameter that was 

estimated previously using data for a different (social dilemma) game. 

IX. Non-equilibrium Beliefs: Learning and Introspection  

As with any equilibrium theory, one possible critique of  QRE is that equilibrium may not 

be behaviorally plausible if players have not had a chance to learn about others’ decisions from 

past plays of the same type of game with similar groups of other players.  One experimentalist 

remarked: “I like the QR but not the E.”  In fact, many situations involving political or legal conflict 

are so novel that players may have little or no information about actions chosen previously by 

others in similar settings.  For example, it is known that players who tend to overestimate the 

cooperativeness of others tend to cooperate more in prisoner’s dilemmas.  In such settings, players 

must learn by introspection about what the other players might do, what others think that others 

might do, etc.  In other cases, learning based on prior observations is likely to be incomplete due 

to short histories, imperfect recall, or changing conditions.  In either case, with incomplete learning 

from past observations or noisy learning from introspection, belief distributions should not be 

required to exactly match action distributions.  Nevertheless, models of introspection and learning 

from experience can incorporate smoothed quantal responses, even though beliefs are not pinned 

down by an equilibrium condition.17  In contrast, equilibrium models can be quite useful and 

accurate when players have had a chance to learn and adjust, as many of the experiments 

                                                           
17 Quantal response learning and introspection models are developed and applied in Goeree, Holt, and Palfrey (2016, 

chapters 5, 8, and 9). 
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summarized above indicate. The point is that determining the appropriate model – quantal response 

equilibrium, quantal response learning, or quantal response introspection – may depend on the 

novelty or stationarity of the situation being studied (Goeree and Holt, 1999).  In this section, we 

consider introspection and learning in the context of the imperfect price competition game. 

Level k and Introspection 

First, consider the similarities and differences between QRE and introspection models 

based on iterated responses, commonly known as “level k” thinking.   For readers who have not 

encountered this approach, you should think of level k as a model of “levels” of strategic 

sophistication, where level 0 is totally noisy, choosing among all decisions with equal probability.  

So if prices could be between 60 and 160, for example, a level 0 person would select each price in 

that interval with equal probability, and their average price would be at the midpoint of 110.  A 

level 1 person would make the best response to the uniform price distribution of a level 0 person, 

a level 2 person is thinking one step ahead and chooses a best response to the prices used by a level 

1 person, etc.  The responses used in this chain are typically taken to be “best responses” with no 

noise, but it is natural to consider quantal responses determined by a relevant precision, as was 

done in the previous section in the discussion of the sequence of convergent curved lines in Figure 

12.  Since there is usually some variation in data collected in laboratory experiments, it is often 

desirable to consider probabilistic (quantal) responses to beliefs determined by level-k analysis. 

This approach will be referred to as a “quantal level-k model.” 

The level-k approach is best suited to modeling behavior in a game that is played only once, 

so all learning must be by introspection (although level-k learning models will be discussed 

below).  The standard level-k implementation is commonly based on noise-free best responses that 

maximize expected payoffs (Nagel, 1995; Stahl and Wilson, 1994).  For the imperfect competition 

game, it is straightforward to use a flat distribution over the 101 possible prices on the [60, 160] 

interval of feasible prices as a “level 0” belief in order to calculate the profit maximizing price 

response.  This level 1 best response turns out to be a price of 90 for the more competitive (low α) 

treatment and 133 for the less competitive  (high α) treatment.  The best response to a price of 133 

is 132, and the best response to 132 is 131.  Therefore, the level-k best response predictions for 

levels 1, 2, and 3 are 133, 132, and 131 for the less competitive treatment, and are 90, 89, and 88, 

for the more competitive treatment.  These level-k best response predictions for each treatment are 
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shown as clusters of adjacent thin horizontal dashed lines in Figure 13. 18  As indicated by Figure 

12, the quantal level-k predictions would exhibit more “spread,” with predictions for higher levels 

being closer to the Nash prediction.   

 
Figure 13. Imperfect Competition with Simulated Learning and Level-k Predictions.   

The sequence of price averages from Capra, et al. (2002) is shown as the series of circular dots, for the high buyer 

inertia treatment (α = 0.8) at the top and for the low inertia treatment (α = 0.2) at the bottom.  The level-k best-response 

predictions for levels 1-3 (thin horizontal dashed lines) are 133, 132, and 131 for the high inertia treatment and 90, 89 

88 for the low inertia treatments.   Level-k predictions are close to the data in the initial round, which is closest to the 

“one-shot” setting that level-k is primarily designed for.  But these predictions are off the mark for the competitive 

low-inertia treatment as prices fall in later rounds, and as players learn and respond to other’s price cuts.   The 

qualitative features of the price trajectories are tracked by a simulated learning model (curved solid lines).  The Nash 

equilibrium price is 60 for both treatments.  The logit QRE predictions based on a precision estimated in a previous 

experiment are 128 for the less competitive (high α) treatment and 78 for the less competitive (low α) treatment, so 

QRE predicts (out of sample) the sharp deviations from the Nash prediction in one treatment and not in the other.   

The level-k model with best responses does a reasonably good job of predicting data (large 

dots in Figure 13) in the first round, especially for the more competitive treatment with prices that 

                                                           
18 There are many variations of iterated-thought models. Camerer, Ho, and Chung (2004) proposed a “cognitive 

hierarchy” model in which a person of level k assumes everyone else is of a lower level of rationality, so a level 2 

person would view the world as being populated by level 0 and level 1 people.  The truncated distributions of levels 

can be modeled with a Poisson distribution that assigns probabilities to each of the integers below one’s own level.  

Alternatively, Goeree and Holt (2001, 2004) model noisy introspection in terms of quantal responses to “he thinks, I 

think,…” layers of iterated beliefs, with more noise for higher numbers of iterations.  This noisy introspection model 

was used to explain data patterns from a wide range of single-shot 2x2 games. Cabrera, Capra and Gómez (2007) also 

consider a noisy model of iterated conjectures, with conjectured decisions being drawn from a logit distribution, but 

after the draw, being treated as point beliefs with no uncertainty. A simple stopping rule is used to end the process 

when the circle is closed in the sense that the initial conjecture about the other’s decision matches the other’s 

conjectured response to one’s own conjectured decision. The model was solved numerically and then used to explain 

data from a one-shot traveler’s dilemma experiment.   
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begin at about 90.  But level k is less useful for evaluating data averages over all rounds, since it 

takes no account of learning that would occur in a series of random matchings that generates a 

price history for each person.  Such learning was especially apparent in the more competitive (α= 

0.2) treatment, for which the average observed price fell from 88 in the initial period (at the level 

1-3 predictions) to much more competitive price levels as price cutting became prevalent. 

Belief Learning 

Models of learning are especially useful in explaining patterns of adjustment toward 

equilibrium, e.g. whether prices tend to converge from above or below. For the model of imperfect 

price competition, the prices in the less competitive treatment started high, well away from the 

Nash prediction, and stayed high.  In contrast, the observed prices for the more competitive 

treatment started in an intermediate range and fell continuously toward a level of about 80.  This 

difference in adjustment patterns, with more movement from round to round in the more 

competitive treatment, is picked up by a simple learning model discussed in Capra et al (2002).  

Belief probabilities associated with each possible price are determined by a weight associated with 

that price, divided by the sum of the belief weights for all prices.  This division ensures that the 

normalized weights are probabilities that sum to 1 (Goeree and Holt, 2003b).  The learning model 

begins with flat beliefs that result from equal weights for all prices, i.e. a uniform distribution.  

When a particular price is observed, then the weight for that price (or price interval) is incremented, 

and the other weights are degraded in a manner ensuring that the sum of belief probabilities is 1.  

This belief-learning model was used in simulations to explain observed patterns of price 

adjustment, i.e. the tendency for observed prices to start high and stay high in the less competitive 

treatment, and for prices to decline toward Nash levels in the more competitive treatment.  The 

learning model used precision and recency parameters taken from an earlier paper, Capra et al. 

(1999) to simulate a learning process with 12 subjects being randomly matched.  The set of 

simulated price trajectories was averaged to generate learning model predictions, which are 

graphed as the curved solid lines for each treatment in Figure 13.  

Belief-learning models are backward-looking in the sense that players are assumed to 

respond (stochastically) to prior observations.  A more forward-looking, strategic approach could 

be to add a level of strategic thinking in the sense that a player could choose a (stochastic) response 

to the anticipated stochastic responses of others to prior observations (Stahl and Wilson, 1995).  

Breitmoser (2012) considers data from six different guessing game studies, each with repeated 
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interactions and target that was 2/3 of the average guess.  He concludes that the data are best 

explained by models that include some elements of stochastic choice and strategic thinking, i.e. 

logistic level-k, noisy introspection (Goeree and Holt, 2004), and quantal response equilibrium.19   

In summary, the imperfect price competition experiment illustrates three distinct 

components of behavioral game theory:  1) level k and noisy introspection models used to predict 

initial decisions in the absence of learning, 2) learning models that can be used to explain patterns 

of adjustment, and 3) equilibrium theories like QRE that provide predictions of overall decision 

averages in equilibrium.  The main message from Figures 12 and 13 is to clarify the distinctions 

between level-k best responses, levels of quantal responses, and a quantal response equilibrium 

that is a distribution that gets mapped into itself, which can sometimes (but not always) be 

approximated by the limit of an iterated series of quantal responses. The power of QRE arises from 

equilibrium restrictions that are analogous to the rational expectations conditions that pervade 

many macroeconomic models.  

X.  Heterogeneity 

The random disturbance shocks being modeled in a QRE result in a predicted distribution 

of decisions across individuals, even if individuals are otherwise identical. An additional source 

of heterogeneity can arise due to variations in individual skills, preferences, or opportunities. The 

simplest quantal response models can be generalized to allow error/precision rates to differ across 

individuals. This could reflect a number of idiosyncratic factors, such as differing levels of 

strategic sophistication, or rational inattention with individual variations in attention costs, 

abilities, and so forth. A general model of this kind is specified in Rogers et al. (2009), called 

Heterogeneous Quantal Response Equilibrium (HQRE). This approach also allows for different 

beliefs individuals have about the precision of the other players’ decisions. Weizsäcker (2003) and 

McKelvey, Palfrey and Weber (2000) consider such models, and there is some evidence that 

individuals underestimate the sophistication of others. 20 

A second source of heterogeneity can arise in the form of diverse preferences or biases. 

For example, individuals may differ in their risk attitudes or in some aspect of social preferences, 

                                                           
19 Of course, it is natural to allow for subjects to exhibit various levels of strategic responses that include level 1, level 

2, or higher levels that more closely approximate quantal response equilibrium play.  To this end, Breitmoser, Tan, 

and Zizzo (2014) use data from a “club game” to study a steady state of different levels that evolves during repeated 

plays of this game.   
20 For a detailed discussion of HQRE models see Goeree et al. (2016, chapter 3). 
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such as inequality aversion, warm glow from socially beneficial behavior, or altruism. Several 

studies report significant individual differences of this sort.  Palfrey and Prisbrey (1997) use a QRE 

structural model to estimate individual fixed effects in the form of warm glow and altruism in a 

voluntary contributions game. While behavior “on average” is close the Nash equilibrium, there is 

a wide variance in the individual choices, and they find significant effects of heterogeneity of a 

warm glow parameter, but not altruism.21  Using an alternative experimental design to measure 

altruistic behavior, Goeree et al. (2002) apply QRE as a structural model to estimate a two-

parameter random effects model of individual altruism parameters as i.i.d. draws from a truncated 

normal distribution with mean, μ, and variance, σ. Finally, Goeree and Holt (2000) augment a 

QRE analysis of a 2-stage bargaining experiment with the estimation of envy and greed parameters 

for a prominent behavioral model of inequity aversion (Fehr and Schmidt, 1999). 

Even the absence of persistent individual differences, a panel of people who make 

decisions in a sequence of n trials with a probability of p associated with decision D1 would exhibit 

a binomial variance of np(1–p) across people.  Goeree, Holt, and Smith (2017) report that variances 

in observed volunteer rates were an order of magnitude higher than would be implied by the 

binomial variance formula, which suggests clear differences in volunteer rates across subjects.  In 

contrast, the fitted 3-parameter (λ, μ, σ)  HQRE model yields predicted variances in volunteer rates 

across people that were similar to the variances observed in the data.  Even though a simple QRE 

model did a reasonable job of fitting average volunteer rates across the 6 treatments, the HQRE 

did much better in terms of explaining the variances.  On the other hand, generalizations with 

additional parameters are only appropriate for data sets that span a range of different treatments, 

in order to avoid overfitting.  In any case, estimation involves the specification of an error structure, 

which is a natural component of QRE. 

Quantal Response Equilibrium for Bayesian Games 

Next consider a class of models in which individual differences are represented as random 

draws from a population distribution.  This Bayesian game approach extends the formal structure 

of games in strategic form by adding two additional components: the set of type profiles, T=T1 

×∙∙∙×TN and the set of player beliefs, where player i’s belief about the profile of other players’ 

                                                           
21 For a related analysis using a similar voluntary contribution environment but different subject pool, see Palfrey and 

Prisbrey (1996). 
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types is denoted ρ(t-i|ti). For player i with available actions, Ai, a (behavioral) strategy for i, σi, 

specifies a probability distribution over Ai as a function of ti. A Bayes-Nash equilibrium of the 

game, σ*, is a strategy profile with the property that each i and for each type ti, σ*i(ti) is optimal 

for i, given the strategies of the other players and given i’s beliefs ρ(t-i|ti). 

 A Bayesian quantal response equilibrium is defined similarly, except σ*i(ti) is a quantal 

response for i, given the strategies of the other players and given i’s beliefs ρ(t-i|ti). We illustrate 

it here with a Bayesian game version of the volunteer’s dilemma discussed earlier in section IV. 

The only change is that the cost of volunteering is no longer assumed to be identical across players. 

Rather, each player has a privately known cost or “type,” denoted by ci, with each private cost 

being an independent draw from a commonly known uniform distribution, G(c) on the interval [0, 

Cmax]. The i.i.d. nature of the draws implies that beliefs ρ(t-i|ti) are independent of ti in this example. 

A strategy for player i  is a mapping from [0, Cmax] into [0,1]. That is a strategy specifies a 

probability of volunteering for each realized private cost, ci. We limit the analysis here to 

symmetric Bayesian Nash equilibria, where all players use the same mapping. 

 The Bayesian Nash equilibrium of the game is similar to a mixed Nash equilibrium of the 

game of complete information, except in the Bayesian Nash equilibrium, every type of every player 

actually adopts a pure strategy. The equilibrium divides the type space, [0, Cmax] into low-cost 

types who volunteer with probability 1 and high-cost types who volunteer with probability 0, with 

a critical cost, c*, defining the cutoff between the volunteering types and free rider types. In 

equilibrium, the cutoff type is indifferent between volunteering and free riding. Thus, a symmetric 

equilibrium of the game is determined by equating the cutoff cost with the expected benefit of 

volunteering, which is the value of getting at least one volunteer, V, times the “pivotal” probability 

that none of the N – 1 other players volunteer: 

(14)   𝑐∗ =  𝑉(1 − 𝑃∗)𝑁−1,  

where P* = G(c*) is the equilibrium probability that a player is a volunteering type, i.e. the 

probability that a random cost realization is below the cutoff c*. 

The private information and heterogeneity in the Bayesian game generally leads to Nash 

equilibrium volunteer rates that differ from the volunteer rate in the complete information version 

of the game if everyone simply had the same cost equal to the expected value of the random cost 

draws. To illustrate this difference, consider the same parameters used for the complete 

information volunteer’s dilemma game in section IV, where V=0.8 and C=0.2.  With two players, 
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the mixed strategy Nash equilibrium volunteer rate was p* = ¾  (shown as a diamond at 0.75 on 

the vertical line in Figure 4).  Compare this with the Bayesian Nash equilibrium of the game where 

the distribution of cost draws, G, is uniform on [0, 0.4]. In that case, P* = G(c*) = c*/0.4 or, 

equivalently, c*=0.4P*. Plugging this into the equilibrium equation (14), gives P*= 2/3, which 

differs from the Nash mixed-strategy equilibrium volunteer probability of 3/4 with two players 

and a deterministic cost (C=0.2) at the midpoint of the range of random cost draws in the Bayesian 

game.  

A symmetric logit QRE of the Bayesian game assigns a volunteer probability to each 

possible cost type, p(c), which satisfies the logit equation:  

𝑝(𝑐)  =  
1

1 + exp (−𝜆[𝑉(1 − 𝑃∗)𝑁−1 − c])
 

where P*= ∫ 𝑝(𝑐)𝑑𝐺(𝑐)
𝐶𝑚𝑎𝑥

0
 is the expected probability that another player volunteers. That is, 

the logit QRE smooths out the step function cutoff strategy, so higher cost types are less likely to 

contribute than lower cost types, but no type volunteers with probability zero or probability one. 

It is not difficult to write a simple program to compute the logit QRE volunteer rates for this game 

as a function of 𝜆, N, V, and C.  These calculations permit a comparison of QRE volunteer rates 

for the Bayesian game, where costs are drawn from the interval [0, 0.4] and the complete 

information game with a fixed cost of 0.2 for all players.  While the exact volunteer probabilities 

are different in complete and incomplete information formulations, they share the same qualitative 

features, but with familiar a “pull-to-center” QRE effect: namely the QRE volunteer rate is less 

than the (Bayes) Nash equilibrium if the (Bayes) Nash equilibrium is greater than 0.5.  Conversely, 

the QRE volunteer rate is greater than the Bayes Nash equilibrium that equilibrium is below 0.5. 

Furthermore, for N > 3, it can be shown that the success probability is increasing in N and 

converges to 1, for every fixed value of 𝜆 (details available on request).  Moreover, the empirical 

content of QRE for this model is just as strong as for the complete information volunteer’s 

dilemma, since in each case there is a single precision parameter that is used to derive volunteer 

rate predictions for a wide range of group size treatments.  

XI. Summary 

This paper uses a series of increasingly complex games to show how quantal response 

equilibria can be represented by decomposing expected payoffs and cumulative distributions of 
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payoff disturbances.  The graphical analysis of symmetric games with binary decisions shows that 

a standard assumption of i.i.d disturbances ensures that the cumulative distribution of the 

disturbance differences will equal 0.5 at a difference of 0.  This symmetry property is implemented 

in virtually all empirical tests of quantal response (logit, probit, etc.), and it provides clear 

empirical content for QRE predictions.  For several of the social dilemma games considered, the 

QRE predictions are “pulled to the center,” which implies that choice probabilities that are more 

extreme than the mixed-strategy Nash predictions are ruled out for all possible values of the logit 

or probit precision parameter.  In contrast, the minimum-effort coordination game yields 

predictions that are pulled to the extremes relative to a mixed Nash equilibrium, which rules out 

any choice proportions between the Nash prediction and 0.5.  In either case, empirical content is 

further enhanced by using a single precision estimate for multiple treatments, for games with wide 

ranges of decisions, or for generating predictions for different data sets.  On the other hand, 

empirical content is weakened by adding parameters, e.g. means and variances of distributions of 

individual effects or propensities, as is the case with any applied work intended to explain 

individual heterogeneity.  The point is that quantal response does have clear empirical content in 

that there are ranges of choice proportions that cannot be explained with any estimated precision 

in some very simple games, even with a single treatment and only two possible decisions.           

Quantal response equilibrium represents a generalization of standard game theory, with a 

unified structure that permits the study of introspection, learning, and equilibrium.  Moreover, the 

statistical nature of QRE offers a natural framework for structural estimation of behavioral 

parameters, in a setting where noise can have interacting equilibrium effects.  In fact, any 

estimation requires a disturbance component, regardless of whether the data arise from individual 

decisions or from interactive games.  With games, it is reasonable to build the disturbances into 

the structure of the interactions, instead of just appending an error onto observed data.  Since QRE 

is a statistical model that assigns positive probabilities (however small) to all feasible actions, it 

permits estimation in a natural manner. The resulting equilibrium statistical models can be used to 

incorporate insights and biases that are documented in research on behavioral economics, e.g. the 

effects of inequity aversion, regret, altruism, or risk aversion in auctions and games.22  QRE has 

                                                           
22 The Goeree, Holt, and Palfrey (2003) paper takes the “safe” and “risky” payoffs from the Holt and Laury (2002) 

“price list” menu and incorporates those payoffs into a two-person matching-pennies game.  Then the joint estimation 

of risk aversion and QRE precision parameters is used to explain why one player will overplay the safe strategy relative 

to Nash and the other player will not, a pattern that is observed in the data.  The Goeree, Holt, and Palfrey (2002) 
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also been applied to sequential games (e.g. McKelvey and Palfrey, 1992, 1998, Sieberg et al. 

2013), where “quantal continuation values” are used to calculate equilibria that exhibit a 

generalized version of subgame perfection.  These quantal continuation values make it possible to 

look “inside the box” and gain an understanding of the process that generates intuitive but 

systematic departures from theoretical predictions, departures that arise naturally from 

intersections or interactions of smoothed quantal responses that replace sharp corners implicit in 

standard models with perfect rationality.23 

It is common for traditional economists to view the variety of biases that have emerged 

from the behavioral economics literature with bewilderment, given that each bias has been tailor-

made to explain one or more seemingly anomalous findings.  Quantal response equilibrium 

provides a coherent theory  for addressing many different behavioral anomalies within a common 

framework, yet capable of incorporating and measuring measure the effects of unobserved 

“behavioral” variables and/or bounded rationality.  This theory has produced dramatic results in 

the sense that seemingly anomalous (but intuitive) deviations from standard theory are often well 

aligned with QRE predictions.  In a nutshell, the smoothed quantal response equilibrium models 

can “light up” the underlying structure of otherwise confusing data arrays and thereby enhance the 

behavioral relevance of game theory as it is increasingly used in social sciences.  
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