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Abstract

We present a novel duality in vector optimization that provides an alternative char-
acterization of Walrasian equilibrium. We demonstrate that equilibrium existence
and the welfare theorems are a direct consequence of duality. By scalarizing the vec-
tor optimization problems, we further demonstrate that Walrasian equilibria are the
maximizers, and roots, of a single function of allocation and prices – the economy’s
potential. We illustrate the usefulness of the potential for computing equilibria.
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“A characterization of a model or a concept in the dual space gives usually a better
insight in the problem and its solution. There are, however, also direct applications of
duality theory.” — P.H.M. Ruys & H.N. Weddepohl (1979)

1. Introduction

Perhaps the simplest example of duality is the equivalence between the maximal
elements of a lowerset and the minimal elements of its complement. Recall that U
is a lowerset in the positive orthant if, for all u ∈ U and x ≥ 0, x ≤ u implies x ∈ U .
Here the partial order is the usual one, i.e. x ≤ u if and only if the weak inequality
holds componentwise. An element u ∈U is maximal if u′ ≥ u for some u′ ∈U implies
u′ = u. In the left panel of Figure 1 the light area corresponds to the lowerset U and
the thick red curve that forms its boundary shows the maximal elements of U . The
darker area labeled V is the complement of U . This is an upperset whose minimal
elements are also indicated by the red curve.1 Obviously, the maximal elements of U
coincide with the minimal elements of V .

Notwithstanding its simplicity, this geometric duality implies core results of gen-
eral equilibrium theory. The set U is the utility possibility set, i.e. the set of util-
ity vectors (u1(x1), . . . ,un(xn)) where the bundles xi belong to some feasible set F.
The set V is the indirect utility possibility set, i.e. the set of indirect utility vectors
(v1(p,m1), . . . ,vn(p,mn)) where the prices and incomes belong to some dual F∗. For
instance, in the left panel of Figure 1, both consumers’ utilities are u(x, y)=p

x+py
and there is one unit of both goods in the economy. If we normalize prices to sum
to one, i.e. the price vector is (p,1− p), then incomes also sum to one. Consumers’
indirect utilities are

v(p,m)=
(√

p
1−p +

√
1−p

p

)p
m (1)

and V consists of all pairs (v(p,m),v(p,1−m)) with p and m ranging from 0 to 1.

The frontier of U that is indicated by the red curve captures the Paretian perspec-
tive that the economy will maximize the utility for the collective, i.e. any gains from

1Recall that V is an upperset of X if, for all v ∈ V and x ∈ X , x ≥ v implies x ∈ V . An element v ∈ V
is minimal if v′ ≤ v for some v′ ∈V implies v′ = v.
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Figure 1: In the left panel, the lowerset U corresponds to the utility possibility set
for a two-consumer economy with utilities u(x, y) = p

x+py. Its complement is the
upperset V that consists of all indirect utility pairs (v(p,m),v(p,1−m)) with v(p,m)
as in (1) and m and p between 0 and 1. The red frontier consists of maximal elements
of U and minimal elements of V . Utilities in this frontier arise from price-allocation
pairs that form a Walrasian equilibrium for the associated income distribution. The
right panel shows that U and V also share a common frontier when U is not convex,
which occurs when utilities are not concave (nor concavifiable), see Section 2.1.

trade will be seized and the final allocations are Pareto optimal.2 The set V captures
the Walrasian perspective that consumers maximize utility at given prices, i.e. ev-
eryone is a price taker. Feasibility dictates that, in any equilibrium of the economy,
consumers’ utilities belong to U . The Walrasian assumption of price-taking dictates
that consumers’ utilities must belong to V . Since U and V share a common frontier,
Walrasian equilibrium exists. For any distribution of incomes there exists a price
such that the affordable and optimal consumption bundles (yielding utilities in V )
are also feasible (yielding utilities in U).

Moreover, duality directly yields the Fundamental Welfare Theorems: any
Walrasian allocation is Pareto optimal and any Pareto optimal allocation is part of
a Walrasian equilibrium. Finally, the duality result provides an alternative to the
usual interpretation that equilibrium prices are market clearing – namely that they

2“The members of a collectivity enjoy maximum utility in a certain position when . . . any small
displacement in departing from that position necessarily has the effect of increasing the utility which
certain individuals enjoy and decreasing that which others enjoy,” Pareto (1906).
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are utility clearing, i.e. the utilities consumers expect given their incomes and
market prices match the utilities they receive from their allocations.

Importantly, duality establishes existence without relying on fixed-point argu-
ments. In addition, we will show that strict quasiconvexity of the indirect utilities (as
we assume throughout) ensures that the Walrasian equilibrium price is unique for a
given income distribution. These results contrast with existing approaches to general
equilibrium and challenge the prevailing opinion that “establishing existence should
involve fixed-point arguments.” The difference is that the duality result pertains to
economies parameterized by income distributions rather than endowments. This al-
ternative parametrization allows us to build on a simple duality between direct and
indirect utility functions (Diewert, 1974; Crouzeix, 1983) and establish existence of
a unique equilibrium price vector for any income distribution.

What does our duality result imply for economies parameterized by endowments?
First, one cannot expect uniqueness of the equilibrium price, which hinges on the as-
sumption that the vi(p,mi) are strictly quasiconvex in prices. When incomes are
functions of prices, i.e. mi = 〈p|ωi〉 = ∑

k pikωik with ωik consumer i’s endowment
of good k, then the indirect utility vi(p,〈p|ωi〉) is obviously not necessarily (strictly)
quasiconvex. What about existence? Previous existence proofs entail fixed-point ar-
guments that are complicated by the possibility that consumers’ demands are un-
bounded when a price is zero. Our duality approach avoids this problem altogether
as no (excess) demands are computed and no market clearing condition is imposed.
Instead, existence of equilibrium prices follows from a geometric argument based on
utility clearing.

We demonstrate that for incomes that are arbitrary functions of prices, i.e. mi =
f i(p) where f (p) = ( f( p), . . . , fn(p)) is a continuous map from the price simplex to the
income simplex, there always exist a price that is utility clearing. A fortiori, Wal-
rasian equilibrium exists for any economy parameterized by endowments as a simple
example of our construction is f i(p)= 〈p|ωi〉. Existence does require a fixed-point ar-
gument, unlike when economies parameterized by incomes, due to the map between
prices and incomes. However, we show that Brouwer’s fixed-point theorem suffices
unlike Arrow and Debreu’s (1954) proof that requires Kakutani’s theorem.

Besides streamlining the standard textbook results of existence and the welfare
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theorems, we put our duality result to work by operationalizing the notion of util-
ity clearing. To this end we introduce the economy’s potential, which is a single
function of allocations and prices:

Yα(x, p;ω) = ∑
i αi(ui(xi)−vi(p,〈p|ωi〉)) (2)

The program we consider is to maximize the potential (2) with respect to prices and
allocations, subject to budget constraints. Since the potential is a continuous function
over a compact domain it has one or more maxima, which we term Yquilibria. We
demonstrate that the set of Yquilibria coincides with the set of Walrasian equilibria
of the economy. We further show that they are roots of the potential, which reflects
the utility clearing nature of equilibrium prices.

Obtaining market outcomes via an optimization program provides a powerful
computational approach to market design. In many applications, non-economic con-
straints such as legal and political constraints or fairness and complexity consid-
erations play a role. These non-economic factors supplement the usual feasibility
and budget constraints and are readily incorporated into an optimization approach,
but might be hard to deal with otherwise. A recent example of this computational
approach is (Bichler et al., 2018, 2019) who built a combinatorial exchange for trad-
ing catch shares in New South Wales (NSW), Australia. The optimization program
entailed a hierarchy of objectives, the top one being economic efficiency, that were
introduced to ensure participation by all stakeholders.3

Besides its use for market design, the potential improves on existing approaches
to compute Walrasian equilibria. A well-known method due to Negishi (1960) finds
Pareto optimal allocations by maximizing a linear welfare function over a strictly
convex utility possibility set (and then solves for prices using the budget constraints).

3The exchange ended two decades of political debate by providing a market-based response to a ma-
jor policy problem faced by fisheries worldwide: the reallocation of catch shares in cap-and-trade pro-
grams designed to prevent overfishing. The design question was how to effectively reallocate shares
using a market that employed linear and anonymous prices, which were deemed necessary for rea-
sons of simplicity, transparency, and fairness. The exchange matched 86% of active fishers’ bids and
reduced their share deficits by 95% in high-priority classes. In addition, 62 businesses successfully
exited the industry by selling all their shares, receiving $10.1 million in total. The NSW government
had set aside $15 million to subsidize the market, but spent only $11.6 million because higher subsidy
levels did not significantly raise their objectives. This saved NSW taxpayers $3.4 million.
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Strict convexity of the utility possibility set is crucial for Negishi’s (1960) method. A
recent contribution by Che et al. (2024) shows how to find Pareto optimal allocations
for a utility possibility set that is convex but not strictly convex, i.e. its boundary may
have “flat” parts that correspond to weakly Pareto optimal allocations.

Our duality result allows for a much more general approach that applies to utility
possibility sets that are not convex at all. The right panel of Figure 1 shows the utility
possibility set for the economy in Section 2.1. As in the convex case of the left panel,
its complement is the indirect utility set and the two sets share a common frontier.
This frontier consists of direct utilities that arise from Pareto optimal allocations and
of indirect utilities that arise from Walrasian equilibrium prices. These allocations
and prices can be readily obtained by maximizing the potential. In contrast, Negishi’s
(1960) method cannot be applied nor can the extension by Che et al. (2024).

1.1. Organization

Section 2 provides a novel duality result in vector optimization that offers an alter-
native interpretation of general equilibrium and paves the way for an optimization
approach to computing equilibrium. Section 3 introduces the economy’s potential,
details the optimization program, and compares it to prior approaches. Section 4
concludes and discusses future directions. Proofs can be found in the Appendix.

2. Duality in Vector Optimization

Consider an exchange economy with N = {1, . . . , N} consumers and K = {1, . . . ,K}

goods. For k ∈ K , let Wk > 0 denote the total amount of good k. The set of feasible
allocations is

F(W) = {x ∈RNK
≥0 | ∑

i∈N

xik ≤ Wk ∀k ∈K }

For vectors v,v′ ∈ RK let 〈v|v′〉 =∑
k∈K vkv′k denote the usual inner product. Without

loss of generality, we normalize prices such that the economy’s total income is one.
The set of prices is then an asymmetric simplex, ΣK (W)= {p ∈RK

≥0 | 〈p|W〉 = 1}, and the
set of income distributions m = (m1, . . . ,mN) is ΣN . For i ∈ N , consumer i’s budget
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set is
Bi(p,mi) = {xi ∈RK

≥0 | 〈p|xi〉 ≤ mi}

and consumer i’s utility function ui : RK
≥0 → R is assumed to be increasing, quasicon-

cave, and differentiable. Consumer i’s bundle xi is affordable if xi ∈ Bi(p,mi) and
optimal if ui(xi) ≥ ui(x′i) for all x′i ∈ Bi(p,mi). The concatenation of the xi for i ∈ N

defines an allocation x.

Definition 1 A Walrasian equilibrium consists of a price p ∈ ΣK (W) and a feasible
allocation x ∈ F(W) such that, for i ∈N , the xi are affordable and optimal.

Consumer i’s indirect utility function

vi(p,mi) = max
〈p|xi〉=mi

ui(xi)

has the following properties.

Lemma 1 The indirect utility vi(p,mi) is

(i) homogeneous of degree zero in income and prices,

(ii) non-increasing in prices and strictly increasing in income,

(iii) continuous and strictly quasiconvex (but not necessarily differentiable).

(iv) The dual of vi(p,mi) is the utility function, i.e. ui(xi)=min〈p|xi〉=mi vi(p,mi).

Properties (i)-(iii) are standard, e.g. Mas Colell et al. (1995, Prop. 3.D.3). We as-
sume utilities are differentiable, which holds if and only if indirect utility is strictly
quasiconvex so that it has a unique minimizer (Crouzeix, 1983). Property (iv) is due
to Diewert (1974) and Crouzeix (1983) who use homogeneity of degree zero to nor-
malize income to one. This is natural when studying a single consumer. However,
when studying the entire economy it will prove useful to consider different income
distributions.

The utility possibility set is defined as4

UPS = {
(u1(x1), . . . ,uN(xN)) |x ∈ F(W)

}
4This definition differs from the usual one that adds the negative orthant to every element of the

UPS, see e.g. Mas Colell et al. (1995, p. 818). The two definitions coincide when ui(0)=−∞ for i ∈N ,
e.g. when ui(xi)=∑

k∈K aik log(xik) for some non-negative aik.
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For u,u′ ∈ RN let u′ ≥ u mean that u′
i ≥ ui for i ∈ N . A maximal element of the

UPS is a vector of utilities u ∈UPS such that u′ ≥ u for some u′ ∈UPS implies u′ = u.
We also define the indirect utility possibility set, which is novel to the literature:

VPS = {
(v1(p,m1), . . . ,vN(p,mN)) | (p,m) ∈ F∗(W) = ΣK (W)×ΣN

}
where the incomes mi are non-negative and sum to one, i.e. m = (m1, . . . ,mN) ∈ΣN . A
minimal element of the VPS is a vector of indirect utilities v ∈VPS such that v′ ≤ v
for some v′ ∈VPS implies v′ = v.

An optimal solution to the maximization problem maxx∈F(W)(u1(x1), . . . ,uN(xN))
is a feasible allocation x ∈ F(W) such that (u1(x1), . . . ,uN(xN)) is a maximal element
of the UPS, i.e. it belongs to the UPS’ upper frontier. Likewise, an optimal solution
to the minimization problem min(p,m)∈F∗(W)(v1(p,m1), . . . ,vN(p,mN)) is a price p ∈
ΣK (W) and an income distribution m ∈ ΣN such that (v1(p,m1), . . . ,vN(p,mN)) is a
minimal element of the VPS, i.e. it belongs to the VPS’ lower frontier. The next
theorem shows that the UPS and VPS intersect only along their frontiers.

Theorem 1 u is a maximal element of the UPS iff it is a minimal element of the VPS:

max
x∈F(W)

(u1(x1), . . . ,uN(xN)) = min
(p,m)∈F∗(W)

(v1(p,m1), . . . ,vN(p,mN)) (3)

Moreover, for any m ∈ ΣN there is a unique solution to the right side of (3), which is
the Walrasian equilibrium price for the economy with income distribution m.

Remark 1 Existence of Walrasian equilibrium prices follows from duality and does
not require any fixed-point arguments, see the Appendix for details.

The proof of (3) is based on two lemmas, see the Appendix. The first lemma shows
that any element of the intersection UPS∩VPS must be a maximal element of the
UPS and a minimal element of the VPS. In other words, the intersection UPS∩VPS
does not contain interior elements of the UPS nor of the VPS. The second lemma
shows that maximal elements of the UPS belong to the VPS and minimal elements
of the VPS belong to the UPS, i.e. their frontiers are in the intersection. Proof of
existence follows from a standard argument in vector optimization and uniqueness
follows from strict quasiconcavity of the indirect utilities, see the Appendix.
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2.1. Fenchel’s Economy

In this section we consider a simple economy with two goods and two consumers who
have quasiconcave utilities that are not concavifiable. This economy illustrates key
features of our duality result. First, the duality result of Theorem 1 applies even
when the UPS is non-convex. This is surprising given the deep connection between
duality and convexity. Strong duality, i.e. the absence of a “duality gap,” typically
only holds for convex optimization problems.5 Second, the duality result applies even
when the Pareto-optimal allocations lie on the boundary of the Edgeworth box and
the standard condition of equal marginal-rates-of-substitution does not apply. Third,
while the Walrasian equilibrium price is unique for any income distribution, there
may be multiple allocations that yield utilities that match the indirect utilities at
this price.

The utility function of both consumers is given by

u(x, y) = x+
√

y+ x2 (4)

The lighter area in the left panel of Figure 2 shows the UPS, which is not convex
nor can it be convexified by “concavifying” the utility function in (4).6 Moreover, the
usual approach of equating marginal rates of substitution to the price ratio does not
apply as the optimal allocations are not necessarily interior. Instead, we derive the
optimal allocations by applying Roy’s identity to the indirect utility

v(p, q,m) = max
( 2m

p
,
√

m
q

)
The darker area in the left panel of Figure 2 shows the VPS. The red curves show
the indirect utility pairs (v(p,1− p,m),v(p,1− p,1−m)) for different levels of m as a
function of p ∈ (0,1). The VPS is the union of all such curves. For each m there is a
unique price such that the indirect utility pair belongs to the (lower) frontier of the

5Even convex optimization problems typically require additional constraint qualification conditions
(such as Slater’s condition) for strong duality to apply, see e.g. (Boyd and Vandenberghe, 2004, p.226).

6The reason is that their indifference curves are non-parallel lines. It can be shown this implies
there is no monotonic transformation of the utility such that it becomes concave (Reny, 2013), an
observation originally due to Fenchel.
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Figure 2: In the left panel, the lighter area corresponds to the UPS and the darker
area to the VPS for u1(x, y)= u2(x, y)= x+(y+x2)1/2. The sets overlap only along their
frontiers indicated by the red curve. The black curves show the indirect utility pairs
(v(p,1−p,m),v(p,1−p,1−m)) for various income levels as functions of p. In the right
panel, the red polyline shows Pareto optimal allocations in the Edgeworth box and
the blue lines show endowments resulting in the same Pareto optimal allocation.

VPS and the (upper) frontier of the UPS, indicated by the red curve.

The indirect utility is differentiable when the arguments of the max differ in
which case Roy’s identity produces an optimal demand for only one of the goods. The
resulting Walrasian equilibria lie on the boundary of the Edgeworth box, i.e. one
consumer receives only one of the goods while the other is indifferent.7 Interior op-
timal allocations require 2m/p =√

m/(1− p) and 2(1−m)/p =√
(1−m)/(1− p), which

implies m = 1
2 and p =p

3−1. Consumer 1’s optimal allocation (x11, x12) then lies on
the line

x12 = 1+ 1
2

p
3− (1+

p
3) x11

for 1
4 (3−p

3) ≤ x11 ≤ 1
4 (1+p

3). The thick red polyline in the right panel of Figure
2 shows all Pareto-optimal allocations in the Edgeworth box. The four segments on
the edges of the Edgeworth box correspond to the four different parts of the UPS’
frontier in the left panel. The line that crosses from the top to the bottom part of the

7For instance, for 0 ≤ m ≤ 1
5 , consumer 1 receives nothing of good 1 and m/(1− p) of good 2 where

the price p is such that consumer 2 is indifferent, i.e. p = 2
p

(2−m)(1−m)−2(1−m).
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Edgeworth box corresponds to a single point in the left panel, i.e. the “kink” on the
45-degree line. This line illustrates that for a given income distribution, equilibrium
allocations need not necessarily be unique (but the equilibrium price is). The line
coincides with both consumers’ indifference curves and both their utilities are u1 =
u2 = 1

2 (1+p
3) for any allocation on the line.

The blue lines in the right panel of Figure 2 are the budget lines for the equilib-
rium price and indicate endowments resulting in the same optimal allocation. Note
that the same allocation can occur for different incomes, e.g. when 1

5 ≤ m ≤ 1
3 several

blue lines end up in the upper-left corner where x1 = (0,1) and x2 = (1,0). However,
their slopes differ, reflecting a different equilibrium price.

2.2. Welfare Theorems

The solutions to the left side of (3) are Pareto optimal allocations that yield utilities
in the UPS’ frontier. The solutions to the right side are incomes mi and a price vector
p that yield utilities vi(p,mi)= ui(xi(p,mi)) that belong to the same frontier. Hence,
the optimal demands are feasible and (x, p) with x = (x1(p,m1), . . . , xN(p,mN)) is the
Walrasian equilibrium for the economy with incomes (m1, . . . ,mN).

Corollary 1 The duality result (3) encapsulates the first and second welfare theo-
rem: Walrasian equilibrium allocations are Pareto optimal and any Pareto optimal
allocation is part of a Walrasian equilibrium.

Uniqueness of the equilibrium price in Theorem 1 requires strict quasiconvexity of
the indirect utilities so that they have a single minimizer. Strict quasiconvexity of
the indirect utility holds if and only if the utility function is differentiable. If this
assumption is relaxed then there can be multiple Walrasian equilibria. Consider,
for instance, an economy with Leontief utilities: ui(x, y) = min(x, y) for i = 1,2. The
indirect utilities are vi = mi/(p+q), which have linear iso-indirect-utility curves. The
Walrasian equilibria for this Leontief economy are x1 = (m,m) and x2 = (1−m,1−m)
for m ∈ [0,1] and any prices p and q that sum to one.

2.3. Endowments, Fixed Points, and Equilibrium Multiplicity

When the economy is parameterized by endowments rather than incomes, the equi-
librium price need not be unique even if utilities are differentiable. The reason is
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simple. For fixed mi, the indirect utility vi(p,mi) is (assumed to be) strictly quasi-
concave in prices. However, when incomes vary with prices, i.e. mi = 〈p|ωi〉 where
ωi denotes i’s endowment, the indirect utility vi(p,〈p|ωi〉) is not necessarily (strictly)
quasiconcave in prices. Hence, the equilibrium price cannot be expected to be unique.

A related issue is equilibrium existence. Previous existence proofs entail fixed-
point arguments that are complicated by the possibility that consumers’ excess de-
mands are unbounded if a price is zero. We completely avoid this issue by not com-
puting any excess demand nor imposing market clearing conditions. Instead, we ask
if there are prices such that indirect utilities match the utilities of feasible alloca-
tions, i.e. whether there exist utility clearing prices. This is essentially a geometric
exercise: do the black curves of Figure 2 still intersect the red frontier once the in-
comes mi in vi(p,mi) depend on prices?

We demonstrate they do even when incomes are general functions of prices. To
this end, consider the parameterized (K −1)-dimensional surface

S f = {
(v1(p, f1(p)), . . . ,vN(p, fN(p))) | p ∈ ΣK (W)

}
where f = ( f1, . . . , fN) is some continuous function that maps price vectors to income
distributions. By construction, S f ⊂ VPS. The question is whether S f intersects the
UPS. We will demonstrate it does for any continuous function f :ΣK (W)→ΣN .

Figure 3 illustrates our claim for the Fenchel economy of Section 2.1. The lighter
areas show the same non-convex UPS as in Figure 2 and the darker areas show the
same complementary VPS. The thick red curves show their common frontiers. The
black curves correspond to indirect utility pairs (v(p,1− p, f (p)),v(p,1− p,1− f (p)))
where f (p) = α|cos(1/(2p(1− p)))| with α = 3

5 in the left panel and α = 4
5 in the right

panel. In the former case, there is a unique intersection of the black curve with the
red frontier, in the latter case there are two.

Why is there at least one intersection of the indirect utility curves with the UPS?
Again the reason is simple. The Walrasian price correspondence is upper-hemi-
continuous, see e.g. Hildenbrand and Mertens (1972). By Theorem 1 this correspon-
dence is single valued when parameterized by income distributions. Hence, the map
P :ΣN →ΣK (W), which assigns Walrasian equilibrium prices to income distributions,
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Figure 3: The UPS (light) and VPS (dark) are the same as in Figure 2. The black
curves correspond to indirect utility pairs (v(p,1− p, f (p)),v(p,1− p,1− f (p))) where
f (p)=α|cos(1/(2p(1− p)))| with α= 3/5 on the left and there is a unique intersection
with the red curve and α= 4/5 on the right and there are two intersections.

is both upper-hemi-continuous and single valued, i.e. it is a continuous function. By
Brouwer’s fixed-point theorem, f ◦P :ΣN →ΣN thus has a fixed-point.

Let m denote a fixed-point of f ◦P and let p = P(m) then

S f ∋ (
v1(p, f1(p)), . . . ,vN(p, fN(p))

) ∈ UPS∩VPS

i.e. S f intersects the UPS. A simple example of this construction is f i(p) = 〈p|ωi〉,
which satisfies f i(p) ≥ 0 and

∑
i∈N f i(p) = 〈p|W〉 = 1. Hence, Walrasian equilibria ex-

ist for any choice of endowments and yield utilities in UPS∩VPS. Since elements
in this intersection are uniquely characterized by some (m1, . . . ,mN) ∈ ΣN , each can
be recovered by choosing ωi = miW so that f i(p) = mi for i ∈ N . This can be accom-
plished via redistribution, i.e. consumers receive additional endowments miW −ωi

for i ∈N . Note that
∑

i∈N miW −ωi = 0 so this redistribution is balanced.

Corollary 2 For an economy parameterized by endowments, one or more Walrasian
equilibria exist and always belong to UPS∩VPS. Hence, any Walrasian equilibrium
allocation is Pareto optimal (first welfare theorem). All Pareto optimal allocations can
be obtained as part of a Walrasian equilibrium by choosing “diagonal” endowments
ωi = miW for i ∈N and varying m = (m1, . . . ,mN) over ΣN (second welfare theorem).
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3. The Economy’s Potential

We operationalize the duality result of Theorem 1 by scalarizing the vector optimiza-
tion programs in (3). For αi > 0, let Uα(x) = ∑

iαiui(xi) denote social welfare and
Vα(p;ω)=∑

iαivi(p,〈p|ωi〉) its dual. Their difference is the economy’s potential.

Definition 2 For α ∈ΣN the economy’s potential, Yα : F(W)×ΣK (W)→R≤0, is

Yα(x, p;ω) = ∑
i∈N

αi
(
ui(xi)−vi(p,〈p|ωi〉)

)
(5)

The potential is continuous and non-positive everywhere on its compact domain.

Definition 3 A Yquilibrium is an allocation-price pair (x, p) that solves

max
x∈F(W), p∈ΣK (W)

〈p|xi〉=〈p|ωi〉

Yα(x, p;ω) (6)

Even though x only enters the utility part and p only enters the indirect utility part,
the budget constraint precludes the maximization problem to be split in two.

The potential is a continuous function over a compact domain, so Bolzano’s the-
orem ensures that it must attain a maximum at least once. In other words, there
is a solution to (6) and a Yquilibrium exists. Since the endowments ωi enter the ob-
jective and constraints in (6) only in the form of incomes 〈p|ωi〉, this solution is the
same for all endowments that yield the same incomes at the equilibrium price. These
endowments lie on a plane, see e.g. the blue lines in the right panel of Figure 2.

Theorem 2 The set of Yquilbria is identical to the set of roots of the potential and
is independent of the welfare weights. The set of Yquilibria coincides with the set of
Walrasian equilibria.

Independence of the welfare weights stems from the fact that each consumer’s utility
clears in a Walrasian equilibrium, i.e. ui(xi) = vi(p,〈p|ωi〉) for i ∈ N , so any linear
combination of their difference vanishes. We introduce them nonetheless to be com-
parable to prior approaches, see the next section, and because they can be useful
instruments in market design applications, see Section 4.
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3.1. Prior Approaches

Negishi’s (1960) method determines Pareto-optimal allocations as functions of the
weights αi by maximizing social welfare Uα. The correct weights then follow from a
system of fixed-point conditions that ensure consumers’ budget constraints are met.8

Concave utilities are required for Negishi’s method so that the UPS is strictly convex.
Section 2.1 provides an example where the UPS is not convex nor can it be convexified
by concavifying the utilities. In such cases, Negishi’s method fails.9

For an auction context, Ausubel (2006) derives equilibrium prices by minimizing
a Lyapunov function that can be shown to be equal to dual social welfare.10 Like
Negishi, Ausubel requires concave utilities that are further assumed to be quasilin-
ear. This latter constraint is particularly restrictive in that it rules out any income
effects. Without quasilinearity, existence of a Lyapunov function that ensures price
convergence cannot be guaranteed.11

Remark 2 Compared to prior approaches that are curtailed to restricted domains
and rely on fixed-point methods, the program in (6) offers the following advantages:

– It allows for income effects and does not require quasilinearity.

– It works for any UPS and does not require concave (or concavified) utilities.

– It determines allocations and prices that are independent of the αi in (5).

– It dispenses with the need for solving a system of fixed-point equations.
8Negishi (1960) shows that the correct weights are equal to the inverse of the marginal utilities

of income, i.e. αi = 1/(∂vi/∂mi) for i ∈ N . These conditions define a system of fixed-point equations:
the inverse marginal utilities of income on the right depend on prices, which in turn depend on the αi
weights on the left. Intuitively, these weights are such that the impact on welfare of an extra dollar
to the economy is independent of who receives it.

9While the UPS in the left panel of Figure 2 cannot be convexified by concavifying the utility
functions, its convex hull can be obtained in a “mechanical fashion” by connecting the two off-diagonal
kink points via a line. Negishi’s method fails in that it can only produce points in the frontier of this
convex hull. But not, for instance, the kink point on the 45-degree line, which corresponds to the
interior Pareto optimal allocations shown in the right panel of Figure 2.

10Ausubel (2006) defines the Lyapunov function L(p)= 〈p|W〉+∑
i vi(p) where 〈·|·〉 denotes the inner

product, Wk is the total amount of good k, and vi(p) = maxxi (ui(xi)− 〈p|xi〉) is the Fenchel dual of
ui(xi). Since Wk =∑

iωik, with ωik consumer i’s endowment of good k, it is straightforward to rewrite
the Lyapunov function as L(p) = ∑

i vi(p,〈p|ωi〉) where vi(p,〈p|ωi〉) = maxxi (ui(xi)+〈p|ωi〉− 〈p|xi〉).
This Lyapunov function equals dual social welfare Vα(p;ω)=∑

iαivi(p,〈p|ωi〉) when αi = 1.
11Scarf (1960), for instance, considers a Leontief economy with income effects and finds that prices

cycle forever.
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3.2. Potential Maximization

An easy demonstration of potential maximization concerns the economy of the Intro-
duction which has two consumers with utilities u(x, y) =p

x+py. If we set welfare
weights to one and use feasibility the potential can be written as

Y = φ(x11)+φ(x12)−φ(m)
(√

p
1−p +

√
1−p

p

)
where φ(x) = p

x+p
1− x, consumers’ allocations are (x11, x12) and (1− x11,1− x12)

respectively, and m = pω11 + (1− p)ω12. The potential’s maximizers are its roots,
which are easy to find: x11 = x12 = m and p = 1

2 . This yields utilities that satisfy
u2

1 +u2
2 = 4 and that produce the UPS’ frontier in the left panel of Figure 1.

Thus far we assumed that utility functions are increasing, which means that the
UPS’ frontier has no “flat” parts. For one consumer’s utility to be raised, the utility
of one or more others will have to be lowered. This is not necessarily the case when
the UPS’ frontier has flat parts, i.e. when the UPS is convex but not strictly convex
and there are weakly Pareto optimal allocations.12 This can occur when utilities are
non-decreasing instead of increasing.

To illustrate, consider an economy with two goods, one unit of each, and two
consumers with utilities

u1(x, y)= log(min(x,2y))

u2(x, y)= log(x+ y)
(7)

The additional log ensures the UPS is a lowerset in R2 rather than its positive or-
thant.13 Obviously, the utilities represent the same preferences with or without the
log. The light area in the left panel of Figure 4 shows the UPS and the dark area the
VPS. The latter consists, as usual, of all pairs (v1(p,m),v2(p,1−m)) where p and m

12A feasible allocation is weakly Pareto optimal if there is no other feasible allocation that makes
everyone better off.

13When a UPS with flat parts is a lowerset in the positive orthant, its complement can have artificial
minimal elements at one of the axes.
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Figure 4: In the left panel, the lighter area corresponds to the UPS and the darker
area to the VPS for the utilities in (7). The red curve shows maximal elements of the
UPS and minimal elements of the VPS. The black curves correspond to the indirect
utility pairs (v1(p,m),v2(p,1−m)) for various income levels as functions of p. In the
right panel, the red line shows Pareto optimal allocations in the Edgeworth box and
the blue lines show endowments resulting in the same Pareto optimal allocation.

range from 0 to 1 and the indirect utilities are

v1(p,m)= log
( 2m
1+ p

)
v2(p,m)= log

(
max

(1−m
p

,
1−m
1− p

)) (8)

The thick red curve shows the maximal elements of the UPS and the minimal el-
ements of the VPS. While the minimal and maximal elements are the same, they
do not span the entire frontier. In particular, utility pairs on the u1 = 0 axis that
correspond to weakly Pareto optimal allocations are not part of the red curve.

A recent contribution by Che et al. (2024) shows how to refine Negishi’s approach
to find only those Pareto optimal allocations that yield utilities on the red curve. We
derive these allocations via potential maximization. The latter has the advantage
that it also produces equilibrium prices, without solving fixed-points, see Remark 2.

Potential maximization is straightforward and can be done using the graphical
tools developed above. The black “V” shaped curves in the left panel of Figure 4 show
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indirect utility pairs (v1(p,m),v2(p,1−m)) as functions of the price for three income
levels. Since the potential’s maxima are roots, we look for allocations and prices for
which these curves touch the UPS. For m ≤ 3

4 this occurs when v2 is minimized at
p = 1

2 . Consumer 1’s allocation is (4
3 m, 2

3 m) and consumer 2 gets the remainder. For
m > 3

4 the black curve touches the UPS but at a higher price. Consumer 1’s allocation
is (1, 1

2 ) so the equilibrium price is p = 2m−1. The right panel of Figure 4 shows the
same results in the Edgeworth box. The red line corresponds to the Pareto optimal
allocations and the blue lines indicate endowments that yield the same allocation.

More generally, let m ∈ Σint
N denote any strictly positive income distribution, i.e.

such that mi > 0 for all i ∈N , and let

Y (x, p;m) = ∑
i∈N

ui(xi)−vi(p,mi) (9)

denote the potential as a function of incomes (rather than endowments) where we set
all welfare weights to one.

Corollary 3 Suppose consumers’ utilities are continuous and non-decreasing. An
allocation x is Pareto optimal and the price p ∈ΣK is Walrasian iff

(x, p) ∈ argmax Y (x, p;m) (10)

for some m ∈Σint
N .

This follows from Theorem 2 and Corollary 1. The allocation-price pair for a degen-
erate income distribution m, which has one or more mi = 0, is obtained by taking the
limit m(ε)→ m where the path m(ϵ) for ε ∈ [0,1] lies entirely in Σint

N .

As in Negishi (1960) and Che et al. (2024), Pareto optimal allocations are found
via maximization, but they are parameterized by incomes mi rather than welfare
weights αi. Negishi’s method requires a strictly convex UPS and Che et al.’s method
a convex but not strictly convex UPS. Potential maximization can handle both these
cases, see Figures 1 and 4, and even applies when the UPS is not convex at all, see
Figure 2. Moreover, potential maximization automatically produces the associated
equilibrium prices.
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4. Conclusions and Outlook

We present a novel duality result in quasiconvex/quasiconcave optimization based on
the notion of utility clearing. Maximal elements of the utility possibility set coincide
with minimal elements of the indirect utility possibility set, a concept introduced in
this paper. We demonstrate that this simple duality streamlines the presentation of
core results in general equilibrium theory – equilibrium existence and the welfare
theorems. We further show our duality result applies even if the utility possibility
set is not convex, which is unexpected given the deep connection between duality and
convexity. Our duality result is, to our knowledge, the most general to date.

We scalarize the vector optimization programs to obtain a standard maximization
problem with a single objective – the economy’s potential, which is a continuous func-
tion of allocations and prices that is everywhere non-positive over its compact do-
main. We show Walrasian equilibria are maximizers, and roots, of the potential. The
potential thus offers a litmus test for equilibrium existence. Given preferences and
endowments it is a mechanical exercise to compute the potential’s maximum value.
A Walrasian equilibrium exists if and only if this exercise returns nil.

In the presence of non-convexities it may not, as Walrasian equilibria need not ex-
ist. In this case, general equilibrium theory is quiet about the allocations and prices
that ensue. But even when the potential does not have roots it has maxima, which
we term Yquilibria. They are natural candidate outcomes for non-convex economies
as they entail optimal allocations subject to linear and anonymous prices that are
approximately utility clearing, i.e. they minimize the gap between expected utilities
based on prices and realized utilities based on allocations.

We plan to explore non-convex markets through the lens of Yquilibria and test
a combinatorial exchange (“YCE”) that implements them (Goeree et al., 2024). The
exchange allows for “all-or-nothing” combinatorial orders to protect traders from ex-
posure problems that arise when each good is traded separately. Linear anonymous
prices follow from an optimization program like (5). The weights αi in (5) provide
engineering opportunities for the designer to favor participants that submit small
orders over those with large combinatorial offers. The empirical validation of YCE,
and its implementation in real-world applications, is left for future research.
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A. Proofs

Proof of Theorem 1. The proof of (3) is based on two lemmas.

Lemma A1 If u ∈UPS∩VPS then u is a maximal element of the UPS and a minimal

element of the VPS.

Proof. If u = (u1, . . . ,uN) ∈ UPS∩VPS there exist x ∈ F(W) and (p,m) ∈ ΣK (W)×ΣN

such that ui = ui(xi) and ui = vi(p,mi) for i ∈ N . Suppose, in contradiction, that

u is not a minimal element of the VPS. Then there exist (p′,m′) ∈ ΣK (W)×ΣN such

that ui(xi) ≥ vi(p′,m′
i) for i ∈ N with strict inequality for at least one i ∈ N . But

vi(p′,m′
i) = ui(xi(p′,m′

i)) with xi(p′,m′
i) consumer i’s optimal (Marshallian) demand

that satisfies 〈p′|xi(p′,m′
i)〉 = m′

i. Since indirect utility is strictly increasing in income

(Lemma 1), we must have 〈p′|xi〉 ≥ m′
i for i ∈ N with strict inequality for at least

one i ∈ N , so
∑

i∈N 〈p′|xi〉 > ∑
i∈N m′

i = 1. However, x ∈ F(W) implies
∑

i∈N 〈p′|xi〉 ≤
〈p′|W〉 = 1, which yields the desired contradiction. Likewise, suppose, in contradic-

tion, that u is not a maximal element of the UPS. Then there exist x′ ∈ F(W) such

that ui(x′i) ≥ vi(p,mi) for i ∈ N with strict inequality for at least one i ∈ N . Since

indirect utility is strictly increasing in income, we must have 〈p|x′i〉 ≥ mi for i ∈ N

with strict inequality for at least one i ∈N , so
∑

i∈N 〈p|x′i〉 >
∑

i∈N mi = 1. However,

x′ ∈ F(W) implies
∑

i∈N 〈p|x′i〉 ≤ 〈p|W〉 = 1, which yields the desired contradiction.

Lemma A2 Minimal elements of the VPS belong to the UPS and maximal elements

of the UPS belong to the VPS.

The proof of Lemma A2 is based on Kuhn-Tucker conditions for vector optimization

problems. These conditions are necessary (see Theorem 7.8 in Jahn, 2011) and suf-

ficient because the vector objective consists of quasiconvex / quasiconcave functions

(see Theorem 7.15 in Jahn, 2011).

Proof. Minimal elements of the VPS can be obtained from the program

min
(p,m)∈ΣK (W)×ΣN
vi (p,mi )≤vi ∀ i<N

vN(p,mN)
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The first-order conditions with respect to prices and incomes are

∇pvN + ∑
i<N

λi∇pvi = ν ∀k ∈ K

−λi
∂vi

∂mi
= ν ∀ i < N

− ∂vN

∂mN
= ν

where λi is the multiplier for vi(p,mi)≤ vi and ν is the multiplier for the homogeneity-

zero constraint
∑

i∈N mi = ∑
k∈K pk. (Gradients are replaced with Clarke subdiffer-

entials if an indirect utility is not differentiable.) Combined the first-order conditions

imply

W + ∑
i∈N

( ∂vi

∂mi

)−1∇pvi = 0

Now vi(p,mi) = ui(xi(p,mi)) where consumer i’s optimal demand xi(p,mi) satisfies

Roy’s identity: xi(p,mi)=−∇pvi/∂mi vi. The first-order conditions thus imply∑
i∈N

xi(p,mi) = W

In other words, if v = (v1(p,m1), . . . ,vN(p,mN)) is a minimal element of the VPS then

v = (u1(x1(p,m1)), . . . ,uN(xN(p,mN))) where the optimal demands xi(p,mi) for i ∈N

are feasible. Hence, v belongs to the UPS.

To show that any maximal element u = (u1(x1), . . . ,uN(xN)) of the UPS belong to

the VPS recall that, for x = (x1, . . . , xN) ∈ F(W),

ui(xi) = min
〈pi |xi〉=mi

vi(pi,mi) (A.1)

If u is maximal then
∑

i∈N xi = W and
∑

i∈N 〈p|xi〉 = ∑
i∈N mi = 1. What we need to

show is that if u is maximal then the price pi that minimizes consumer i’s indirect

utility is the same for all i ∈N .

A standard envelope argument14 shows that ∂ui/∂xik = (∂vi/∂mi)pik if xik > 0

14From vi(p,mi) = max〈p|xi〉=mi ui(xi) we have ∂vi/∂mi = λ where λ is the multiplier of the bud-
get constraint. Moreover, from ui(xi) = min〈p|xi〉=mi vi(p,mi) we have ∂ui/∂xik = λpk if xik > 0 and
∂ui/∂xik ≤λpk if xik = 0.
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and ∂ui/∂xik ≤ (∂vi/∂mi)pik if xik = 0. Let MRSi
kl = ∂xik ui/∂xil ui denote consumer i’s

marginal rate of substitution. There exists a common price vector, p, that minimizes

every consumer’s indirect utility if, for i ∈N and k, l ∈K ,
MRSi

kl = pk
pl

if xik > 0, xil > 0

MRSi
kl ≤ pk

pl
if xik = 0, xil > 0

MRSi
kl ≥ pk

pl
if xik > 0, xil = 0

(A.2)

Consider the program to obtain maximal elements of the UPS:

max
x∈F(W)

ui (xi )≥ui ∀ i<N

uN(xN)

The first-order conditions are

λi
∂ui

∂xik
= µk −νik ∀ i < N

∂uN

∂xNk
= µk −νNk

where λi is the multiplier for ui(xi) ≥ ui, µk is the multiplier for the feasibility con-

straint
∑

i∈N xik ≤ Wk, and νik is the multiplier for the non-negativity constraint

xik ≥ 0. We next show the first-order conditions imply (A.2). If xik > 0 and xil > 0

then νik = νil = 0 and MRSi
kl = µk/µl . If xik = 0 and xil > 0 then νik ≥ 0 and νil = 0 so

MRSi
kl ≤µk/µl . Finally, if xik > 0 and xil = 0 then νik = 0 and νil ≥ 0 so MRSi

kl ≥µk/µl .

To summarize, the conditions in (A.2) are satisfied for p =µ.

To prove the “Moreover” part, i.e. that the solution to (3) is unique for a given m ∈ΣN ,

suppose, in contradiction, that (p,m) and (p′,m) are two solutions to (3). This means

that both are minimal elements of the VPS. Strict quasiconcavity of the indirect util-

ities implies that, for i ∈ N , vi(1
2 (p+ p′),m) < vi(p,m) or vi(1

2 (p+ p′),m) < vi(p′,m),

contradicting minimality of either (p,m) or (p′,m). ■

Proof of Remark 1. We will establish existence of a maximal element of the UPS

(the argument for existence of a minimal element of the VPS is similar). For i ∈ N

and k ∈ K , let ωik > 0 and define Sω = {u ∈ RN |ui ≥ ui(ωi)∀ i ∈ N }. Feasibility and

continuity of the utility functions ensure that Sω∩UPS is a compact set, called a
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compact section of the UPS. By Theorem 6.3.c in (Jahn, 2011), this compact section

has a maximal element, which is also a maximal element of the UPS. ■

Proof of Theorem 2. For allocations that satisfy consumers’ budget constraints,

ui(xi) ≤ vi(p,〈p|ωi〉) = max〈p|x′i〉=〈p|ωi〉 ui(x′i) for i ∈ N , so the program’s value is non-

positive. If (x, p) is a Walrasian equilibrium then allocations are optimal at price p,

i.e. ui(xi)=max〈p|x′i〉=〈p|ωi〉 ui(x′i), so (x, p) is a root, whence maximizer. Conversely, if

(x, p) is a root of the objective then each term in the objective’s sum is zero (as they

are all non-positive and weights are positive). But ui(xi) = vi(p,〈p|ωi〉) for i ∈ N

means everyone is maximizing at price p and x ∈ F(W) means the optimal demands

are feasible. Hence, (x, p) is a Walrasian equilibrium. ■

24


	Introduction
	Organization

	Duality in Vector Optimization
	Fenchel's Economy
	Welfare Theorems
	Endowments, Fixed Points, and Equilibrium Multiplicity

	The Economy's Potential
	Prior Approaches
	Potential Maximization

	Conclusions and Outlook
	Proofs

