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An Explanation of Anomalous Behavior in Models
of Political Participation
JACOB K. GOEREE California Institute of Technology
CHARLES A. HOLT University of Virginia

This paper characterizes behavior with “noisy” decision making for models of political interaction
characterized by simultaneous binary decisions. Applications include: voting participation games,
candidate entry, the volunteer’s dilemma, and collective action problems with a contribution

threshold. A simple graphical device is used to derive comparative statics and other theoretical properties
of a “quantal response” equilibrium, and the resulting predictions are compared with Nash equilibria
that arise in the limiting case of no noise. Many anomalous data patterns in laboratory experiments based
on these games can be explained in this manner.

Many political and social decisions involve only
two options: to vote or not, to enter a con-
test or not, to join an alliance or not, etc. The

apparent simplicity of these binary-choice situations is
somewhat misleading in that the best decision requires
correct beliefs about others’ behavior. For instance,
people may hesitate to go to a particular restaurant or
bar when many others are likely to go, or as Yogi Berra
said, “Nobody goes there anymore. It’s too crowded.”1

In other cases, the rewards associated with each deci-
sion may be contingent on getting a minimal number
of decisions of a certain type, e.g., the choice by a coun-
try of whether or not to join an alliance, or jump into
world war, or impose an embargo. A similar example
occurs when a majority vote is needed to approve a
legislative pay raise that each legislator would prefer
not to support if it would pass otherwise (Ordeshook
1986, chap 3). Sometimes the minimal number of con-
tributors needed is only one, as in the “volunteer’s
dilemma,” where all players are better off if at least one
of them incurs a cost from vetoing an option, attempt-
ing a dangerous rescue, or volunteering to perform a
task that benefits them all (Diekmann 1985).

In all these examples, the question is whether inde-
pendent choices made by different people will some-
how generate the “correct” amount of participation or
whether the inability to coordinate will lead to defi-
ciencies such as excess entry or crowding, insufficient
effort to produce a public good, or the failure of anyone
to initiate an action that benefits all. Another interest-
ing issue is how aggregate behavior patterns respond
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to changes in the number of people involved and the
relevant costs and benefits of participation.

This paper is motivated in part by the surprising and
sometimes anomalous behavior patterns observed in
many laboratory experiments that involve simple bi-
nary choices. For example, Kahneman (1988) reports
an experiment in which the number of people who de-
cide to enter was approximately equal to a “capacity”
parameter that determined whether or not entry was
profitable. He remark, “To a psychologist, it looks like
magic.” Subsequent experiments have been based on
similar models, and the general finding is that play-
ers are able to coordinate entry decisions in a man-
ner that roughly equates expected profits for entry to
the opportunity cost (Ochs 1990; Sundali, Rapoport,
and Seale 1995).2 However, the “magic” of efficient
entry coordination has been called into question by
recent experimental results. For example, Fischbacher
and Thöni (2001) conducted an experiment in which
a monetary prize is awarded to a randomly selected
entrant, so the expected prize amount is a decreasing
function of the number of entrants. Over-entry was
observed, and it was more severe for larger numbers of
potential entrants. This over-entry pattern is somewhat
intuitive but contradicts the theoretical prediction that
rewards should be equalized for the two options, inde-
pendent of the number of potential entrants. Camerer
and Lovallo (1999) also find over-entry when posten-
try payoffs depend on a skill-based competition, but
they report under-entry and positive net payoffs in the
absence of such competition.

Other interesting behavior patterns have been
observed in experiments based on the volunteer’s
dilemma, in which everyone receives a benefit if at
least one person incurs the cost of “volunteering” but
each person would prefer to free-ride on others’ ef-
forts. The theoretical prediction is that an increase in
the number of potential volunteers will reduce the
probability that any one person volunteers, which is
intuitive, and will decrease the probability that at least
one person volunteers, which is unintuitive. Experi-
mental data support the intuitive prediction but not the
unintuitive one (Franzen 1995). Similarly, laboratory

2 This successful coordination has been explained by models of adap-
tation and learning (Erev and Rapoport 1998; Meyer et al. 1992).
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results for binary coordination games and collective
action problems support some theoretical predictions,
but also generate intuitive data patterns that are not
explained by standard game theory, as discussed below.

The objective of this paper is to explore the common
structural elements of a wide class of binary-choice
games, and to provide a unified theoretical perspective
on seemingly contradictory results, like the positive re-
lationship between over-entry (or the probability of
getting a volunteer) and the number of potential en-
trants (or volunteers). Our approach involves relax-
ing the extreme rational choice assumption of perfect
maximizing behavior where people respond sharply to
small payoff differences, which, in reality, are likely
to be dwarfed by an array of emotions, perception
biases, and unobserved individual differences in fair-
mindedness, altruism, etc. Instead of trying to model all
these dimensions explicitly, our approach is to replace
the knife-edge responses to small payoff differences
with “smoothed” stochastic responses that represent
random variations in unobserved factors (Goeree and
Holt 1999; McKelvey and Palfrey 1995; Palfrey and
Rosenthal 1985, 1988). The broader value of this work
is that it provides an enriched and empirically useful
game theory that applies to the kinds of situations of
concern to political scientists, i.e., those with a rich
diversity of individual motivations and attitudes. In
addition, we derive our results using a simple graphical
device that can be used in a wide variety of seemingly
unrelated binary-choice situations.

TO PARTICIPATE OR NOT?

A symmetric N-person participation game is charac-
terized by two decisions, which we call participate and
exit.3 Examples include the decision of whether or
not to run for office, try to unseat an incumbent, or
approach a wealthy donor seeking campaign contribu-
tions. The payoff from participation is a function of
the total number, n, who decide to participate, which
is denoted π(n), defined for n ≤ N. In a campaign entry
game, for example, the payoff for all candidates may be
a decreasing function of the number, n, who enter. The
expected payoff for the exit decision is denoted c(n),
which is typically nondecreasing in n (the number of
players that enter). In many applications, c(n) is simply
a constant that can be thought of as the opportunity
cost of participation, but we keep the more general
notation to include examples where a higher number
of participants has external benefits to all, including
those who do not participate (e.g., campaigning for
civil rights; see Chong 1991).

A strategy in this game is a participation probability,
p ∈ [0, 1]. In order to characterize a symmetric equi-
librium, consider one player’s decision when all others
participate with probability p. Since a player’s own pay-
off is a function of the number who actually participate,

3 The participation game terminology was introduced by Palfrey and
Rosenthal (1983) in the context of the decision of whether or not
to vote. This model is discussed below, under Voting Participation
Games.

the expected payoff for participation is a function of the
number of other players, N − 1, and the probability p
that any one of them will participate. Assuming in-
dependence, the distribution of the number of other
participants is binomial, with parameters N − 1 and
p. This distribution, together with the underlying π(n)
function, can be used to calculate the expected partici-
pation payoff, which is denoted πe(p, N − 1). More
precisely, πe(p, N − 1) is defined to be the expected
payoff if a player participates (with probability 1) when
all N − 1 others participate with probability p. Simi-
larly, ce(p, N − 1) is the expected payoff from exit
when the N − 1 others participate with probability p.

Equilibrium

In a Nash equilibrium, players choose the decision that
yields the highest expected payoff, or randomize in the
case of indifference. Our goal is the explanation of
“anomalous” data from laboratory experiments, so it
is convenient to model a type of noisy behavior that
includes the rational-choice Nash predictions as a limit
case. One way to relax the assumption of noise-free,
perfectly rational behavior is to specify a utility func-
tion with a stochastic component. For example, people
may be motivated to vote by a sense of citizen duty
(Riker and Ordeshook 1968), the strength of which
may vary across individuals and across time for the
same individual as external factors change. Thus the
expected payoff for participation, πe, and the expected
payoff for exit, ce, are each augmented by adding the
stochastic term µεi, where µ > 0 is an “error” param-
eter and the εi represent identically and independently
distributed realizations of a random variable for deci-
sion i = 1 (participate) or 2 (exit). The utility of partic-
ipation is greater if πe + µε1 > ce + µε2, so that when
µ = 0 the decision with the highest expected payoff
is selected, but higher values of µ imply more noise
relative to payoff maximization. This noise can be due
either to errors (e.g., distractions, perception biases,
or miscalculations that lead to nonoptimal decisions)
or to unobserved utility shocks that make rational be-
havior look noisy to an outside observer. Regardless
of the source, the result is that choice is stochastic,
and the distribution of the random variable determines
the form of the choice probabilities.4 The participation
decision is selected if πe + µε1 > ce + µε2 or, equiv-
alently, if ε2 − ε1 < (πe − ce)/µ, which occurs with
probability

p = F
[
πe(p, N − 1) − ce(p, N − 1)

µ

]
, (1)

where F is the distribution function of the difference
ε2 − ε1. Since the two random errors are identically
distributed, the distribution of their difference will
be “symmetric” around 0, so F(0) = 1/2.5 The error

4 For instance, a normal distribution yields the probit model, while a
double exponential distribution gives rise to the logit model, in which
case the choice probabilities are proportional exponential functions
of expected payoffs.
5 More formally, Pr(ε1 ≤ ε2) = 1/2, so Pr(ε1 − ε2 ≤ 0) = F(0) = 1/2.
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parameter, µ, determines the responsiveness of partic-
ipation probabilities to expected payoffs. Perfectly ran-
dom behavior (i.e., p = 1/2) results as µ → ∞, since
the argument of the F( · ) function on the right side of
Eq. (1) goes to zero and F(0) = 1/2 as noted above.
Perfect rationality results in the limit as µ → 0, since
the choice probability converges to zero or one, de-
pending on whether the expected participation payoff
is less than or greater than the expected exit payoff.
More generally, for µ > 0, Eq. (1) expresses the par-
ticipation probability as a noisy best response to the
expected-payoff-difference, which we also refer to as a
“stochastic best response.”

Equation (1) characterizes a quantal response equi-
librium (McKelvey and Palfrey 1995) if the participa-
tion probability p in the expected payoff expressions on
the right is equal to the choice probability that emerges
on the left.6 Without further parametric assumptions,
there is no closed-form solution for the equilibrium
participation probability, but a simple graphical device
can be used to derive theoretical properties and char-
acterize factors that might cause systematic deviations
from Nash predictions. The graph is based on a separa-
tion of the expected-payoff-difference from a term that
depends only on the noise elements (µ and the distribu-
tion of random elements). To this end, apply the inverse
of the F function to both sides of (1) and multiply by µ
to obtain µF−1(p) = πe(p, N − 1) − ce(p, N − 1). The
determination of the equilibrium participation proba-
bility is illustrated in Figure 1. As p goes from zero
to one on the horizontal axis, µF−1(p) increases from
−∞ to +∞, as shown by the thick curved line with a
positive slope in the figure.7 Since the expected pay-
off difference is continuous in p, it has to cross the
µF−1(p) line at least once, which ensures the existence
of a symmetric equilibrium.8 If the expected payoff
difference πe(p, N − 1) − ce(p, N − 1) is decreasing in
p, the intersection will be unique. This case is illustrated
in Figure 1, where the negatively sloped thin line at the
left side of the figure represents the expected payoff dif-
ference. This line intersects the “inverse distribution”
line at the equilibrium probability labeled QRE on the
left. Also, note that the point where the expected pay-
off difference crosses the zero-payoff line constitutes
a mixed-strategy Nash equilibrium, since players are
only willing to randomize if expected payoffs for the

6 The quantal response equilibrium, developed by political scientists
(McKelvey and Palfrey 1995), has been applied to the study of in-
ternational conflict by Signorino (1999). A general introduction to
the usefulness of the quantal response approach in the analysis of
political data can be found in Morton 1999.
7 To see this, note that an expected-payoff-difference of −∞ on the
vertical axis will cause the participation probability to be zero, and
an expected payoff difference of +∞ will cause the participation
probability to be one. This is why the thick “inverse distribution”
line starts at −∞ on the left side of Figure 1 and goes to +∞ on the
right.
8 The existence of quantal response equilibria for normal-form
games with a finite number of strategies is proved in McKelvey and
Palfrey 1995, and that for normal-form games with a continuous
strategy space in Anderson, Goeree, and Holt 2002.

FIGURE 1. Quantal Response and Nash
Participation Probabilities for Low-N and
High-N Cases

two decisions are equal. This crossing point is labeled
“NE Mix” in the figure.9

Next consider the intuition for why the quantal re-
sponse equilibrium is not typically at the intersection
of the expected-payoff-difference line and the zero-
payoff horizontal line in Figure 1. With equal expected
payoffs for participation and exit, the person is indiffer-
ent, and since F(0) = 1/2, the stochastic best response
to such indifference is to participate with probability
one-half. In the figure, this result can be seen by start-
ing where expected payoffs are equal at the NE Mix
point on the left and moving horizontally to the right,
crossing the thick line at p = 1/2. This is not a quantal
response equilibrium since the p we started with (at the
NE Mix) is not the stochastic best response to itself. To
find a stochastic best response to any given entry prob-
ability p on the horizontal axis, first move in the ver-
tical direction to find the associated expected-payoff-
difference and then move horizontally (left or right) to
the thick line, which determines the stochastic best re-
sponse to that expected-payoff-difference. Equilibrium
requires that the stochastic best response to the others’
participation probability is that same probability, which
occurs only at the intersection of the expected-payoff-
difference and inverse distribution lines in Figure 1. To
summarize, a symmetric quantal response probability is
a stochastic best response to itself, whereas a symmet-
ric Nash equilibrium probability is a best response to
itself.10

9 All the games considered in this paper are symmetric in the sense
that players’ payoff functions are identical. We only consider sym-
metric mixed-strategy Nash equilibria for such games. It is sometimes
possible to find asymmetric Nash equilibria for symmetric games, but
without some coordination device these equilibria seem less plau-
sible.
10 At the “NE Mix” point in Figure 1, expected payoffs are equal
and any probability is a best response, so the NE Mix probability is
a best response to itself.
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As long as the expected payoff difference is decreas-
ing in p, it is apparent from Figure 1 that any factor
that increases the expected payoff difference line for
all values of p will move the intersection with the thick
inverse distribution line to the right and, hence, raise
the quantal response equilibrium probability. In an
entry game, for example, the original π(n) function
would be decreasing if expected rewards are decreasing
in the number of entrants, and it is then straightfor-
ward to show that πe(N − 1, p) is a decreasing func-
tion of both arguments.11 When the opportunity cost
payoff from not entering is constant, it follows that
the expected-payoff-difference πe(p, N − 1) − ce(p,
N − 1) is decreasing in p and N, so a reduction in the
number of potential entrants will shift the thin line
in the figure upward and raise the quantal response
(QRE) probability, as represented by a comparison of
the high-N case on the left with the low-N case on the
right.

The effect of additional “noise” in this model is easily
represented, since an increase in the error parameter µ
makes the µF−1(p) line steeper around the midpoint,
p = 1/2, although it still passes through the zero-payoff
line at this midpoint (see Figure 1). This increase in
noise, therefore, moves the quantal response equilib-
rium closer to one-half, as would be expected. In con-
trast, as a reduction in µ makes the µF−1(p) line flatter,
and in the limit it converges to the horizontal line at
zero as the noise vanishes. In this case, the crossings
for the QRE and mixed Nash equilibria match up, as
would be expected.

Next, consider coordination-type games where par-
ticipation can be interpreted as an individual decision
of whether or not to help with a group production
process that will only succeed if enough people help
out. For example, participation in revolutionary activi-
ties may be individually costly unless the movement
reaches a critical mass. In such games, it does not pay
to participate unless enough others do, so π(n) will
be less than c(n) for low n and greater than c(n) for
high n. Thus the right side of Eq. (1) is increasing in
the probability of participation. This property may re-
sult in multiple quantal response equilibria since there
can be multiple intersections when both the expected-
payoff-difference and the inverse distribution lines are
increasing in p (see Figure 2, which shows a case with

11 Intuitively, holding N fixed, a higher probability of entering means
that more people enter, which results in a lower expected payoff
of entry. Similarly, holding p fixed, a higher number of potential
entrants results in more entry. This can be made more precise as
follows: suppose N is fixed and the entry probability is p1. Let the
number of entrants be determined by drawing a random number that
is uniformly distributed on [0, 1] for each player. If the number is less
than p1, a player enters; otherwise the player stays out. When the
probability of entering increases to p2 > p1, the number of entrants
is at least the same as before for all possible realizations of the random
variables, and greater for some realizations. (When a player’s random
variable is less than p1, it is certainly less than p2, leading to the
same entry decision, and when it lies between p1 and p2, the player’s
decision changes from staying out to entering.) Likewise, when p is
fixed, an increase in the potential number of entrants means that
for all possible realizations of players’ random draws, the number
of entrants is the same or higher, which makes the expected payoff
from entry the same or lower.

FIGURE 2. Quantal Response and Nash
Mixed Participation Probabilities for a Game
with Positive Externalities

three intersections). With multiple crossings, any fac-
tor that shifts the expected-payoff-difference line up-
ward will move some intersection points to the left
and others to the right. Thus the comparative statics
effects are of opposite signs at adjacent equilibria, and
we need to use an analysis of dynamic adjustment
to restrict consideration to equilibria that are stable
(the Samuelsonian “correspondence principle”).12 A
simple dynamic model can be based on the intuitive
idea that the participation probability will increase
over time when the “noisy best response” to a given
p is higher than p. Thus dp/dt > 0 when F((πe(p, N −
1) − ce(p, N − 1))/µ) > p, or equivalently, p would
tend to increase when πe(p, N − 1) − ce(p, N − 1) >
µF−1(p) and decrease otherwise. For example, start
at p = .6 in Figure 2, which gives a positive expected-
payoff-difference and a stochastic best response of al-
most .9, found by moving horizontally to the right. For
this reason, a rightward arrow is present at p = .6 on
the horizontal axis. The other directional arrows are
found similarly, so there is an unstable QRE at about
.3, with arrows pointing away. In this manner it can be
seen that the quantal response equilibrium will be sta-
ble whenever the expected-payoff-difference line cuts
the inverse distribution line from above.

Note that any factor that raises the payoff from
participation, and hence shifts the expected-payoff-
difference line upward in Figure 2, will raise the QRE
participation probability if the equilibrium is stable and
not otherwise. To summarize:

Proposition 1. There is at least one symmetric quan-
tal response equilibrium in a symmetric binary-choice
participation game. The equilibrium is unique if the dif-
ference between the expected payoff of participating and

12 Similar dynamic-stability arguments were used by Palfrey and
Rosenthal (1988) and Fey (1997).
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that of exiting is decreasing in the probability of partici-
pation. In this case, any exogenous factor that increases
the participation payoff or lowers the exit payoff will
raise the equilibrium participation probability. The same
comparative statics result holds when there are multiple
equilibria and attention is restricted to stable equilibria.

It is useful to begin with a discussion of entry games
since they are the simplest application. Moreover, the
quantal response properties for these games also ap-
ply to the stable equilibria in more complex applica-
tions such as threshold contribution games, volunteer’s
dilemma, and voting. The reader who is primarily in-
terested in one of these subsequent applications may
wish to skip any of the later sections after reading as
far as Proposition 2.

ENTRY GAMES: UNDER-ENTRY AND
OVER-ENTRY RELATIVE TO MIXED
NASH PREDICTIONS

A widely studied example that fits the binary-choice
framework is an “entry” game, where the choice is
between a risky entry decision with high potential pay-
offs (if few others enter) and a secure exit payoff. For
example, entry may correspond to launching a political
campaign or filing an application for a limited num-
ber of public broadcast licenses. There are N potential
entrants, and we assume that if all others enter with
probability one, the representative player would pre-
fer to exit due to congestion, but if nobody else enters,
then the player would prefer to enter: πe(1, N − 1) <
ce(1, N − 1) and πe(0, N − 1) > ce(0, N − 1). Consider
a simple three-person congestion problem where each
person’s payoff from participation is one unless both
others also participate, in which case congestion re-
duces the payoff to zero. The exit payoff is c, with
0 < c < 1. When both others participate with probabil-
ity p, the probability of congestion is p2, so πe = 1 − p2,
which is less than the exit payoff c when p = 1 and
greater than the exit payoff when p = 0. In this ex-
ample and in all other applications considered below,
the expected-payoff-difference will be continuous and
decreasing in p, so there is a unique p∗ for which

πe(p∗, N − 1) = ce(p∗, N − 1). (2)

[For instance, in the three-person congestion prob-
lem p∗ = (1 − c)1/2.] Since (2) implies indifference,
it characterizes the unique symmetric Nash equilib-
rium in mixed strategies. The net payoff for participa-
tion, πe(p, N − 1) − ce(p, N − 1), is decreasing in p, as
shown by the “expected-payoff-difference” line on the
left in Figure 1. As noted above, the crossing of this
thin line and the horizontal line at zero represents the
solution to Eq. (2) and is labeled “NE Mix” on the left
side of the figure.

In order to compare the Nash and quantal response
equilibria, note that the thin lines representing the
differences in expected payoffs are always negatively
sloped in an entry game. First, consider the high-N
case on the left, where the large number of potential
entrants lowers the expected payoff associated with a

given participation probability, and the resulting mixed
equilibrium is less than one-half. The intersection of the
negatively sloped thin line and the increasing inverse
distribution line determines the quantal response par-
ticipation probability, and this intersection will be to
the right of the mixed Nash probability. The opposite
occurs for the low-N case on the right side of the graph,
where the low number of potential entrants results in a
mixed equilibrium that is greater than one-half. In this
low-N case, the QRE probability is biased downward
from the Nash probability. One way to understand both
cases is to note that the effect of adding noise is to push
the equilibrium toward one-half.13

Finally, recall that the thin lines in Figure 1 repre-
sent the expected-payoff-difference on the right side of
Eq. (1). At the QRE probability on the left, net ex-
pected payoffs are negative and there is over-entry in
this case of a high number of potential entrants. In
contrast, the thin line lies above the zero line at the
QRE probability on the right side, for the low-N case.
This negative relationship between the number of po-
tential entrants and the net returns from participation is
consistent with the experimental results of Fischbacher
and Thöni (2001) discussed in the Introduction.14 To
summarize:

Proposition 2. In the quantal response equilibrium for
the entry game, there is over-entry resulting in negative
net expected payoffs when the mixed-strategy Nash equi-
librium is less than one-half. The reverse effect, under-
entry, occurs when the mixed Nash equilibrium is greater
than one-half.

The implication of Proposition 2 is that the quantal
response equilibrium for the entry game is always be-
tween the Nash equilibrium and one-half. Therefore,
an observed participation that is more extreme than
the Nash prediction would contradict the quantal re-
sponse equilibrium model for any error rate, µ, and
any distribution of stochastic shocks, F.

Meyer et al. (1992) report an experiment in which
subjects choose to enter one of two markets. With a
group size of six, profits are equalized, with three in
each market, so the equilibrium probability of entry
is one-half. An immediate corollary to Proposition 2
is that in this case QRE coincides with Nash and both
predict an entry probability of one-half. This prediction
is borne out by their data: the average of the number
of people that enter each market is never statistically
different from three in the 11 baseline sessions that

13 In some games with strong strategic interactions, the “snowball”
effects of small amounts of noise can push decisions away from the
unique Nash equilibrium so strongly that they overshoot the mid-
point of the strategy space, with most of the theoretical density at
the opposite end of the set of feasible decisions from the Nash pre-
diction. This is the case for some parameterizations of the “traveler’s
dilemma” (Capra et al. 1999). This prediction, that the data will be
clustered on the opposite side of the midpoint decision from the
Nash equilibrium, is borne out by the experimental evidence.
14 In their game, a prize worth V is awarded randomly to one of the
n players who purchase a lottery ticket at cost c, so π(n) = (V/n) − c.
From this it can be shown that the expected-payoff-difference is
decreasing in p and N.
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they report (see their Table 3), even when the game is
repeated for as many as 60 periods (see their Table 5).15

Camerer and Lovallo (1999) provide support for the
QRE under-entry prediction when the Nash probabil-
ity of entry is greater than one-half. In their experiment
subjects decide whether or not to enter a contest with a
fixed number, c, of prizes. The entrants were randomly
ranked and the top c entrants divide $50 according
to their rank, while all other entrants lose $10. The
exit payoff is simply 0, and the equilibrium number of
entrants is (close to) c + 5. The parameters were chosen
such that the Nash entry probability was greater than
or equal to one-half in all treatments.16 Under-entry
occurred in all of the eight sessions in their baseline
treatment, which resulted in positive expected payoffs
for entry (see their Table 4). The net expected payoff
of entry across sessions and periods was $15, which
translates into under-entry of one or two subjects per
round.17

The strongest evidence for the quantal response
predictions in Proposition 2 can be found in Sundali,
Rapoport, and Seale 1995. In their experiments, sub-
jects received a fixed payoff of one for exit and an
entry payoff that is increasing in market capacity,
c, and decreasing in the number of entrants: π(n) =
1 + 2(c − n). Thus entry in excess of capacity reduces
payoffs below one, the payoff for exit. It is straight-
forward to derive the mixed Nash entry probability:
p∗ = (c − 1)/(N − 1), which is approximately equal
to the ratio of capacity to number of potential en-
trants.18 The capacities for the various treatments were
c = 1, 3, . . . , 19, and with groups of N = 20 subjects,
the Nash equilibrium probability ranged from p∗ = 0
to p∗ = 18/19. Figure 3 shows the entry decisions av-
eraged over all subjects, with the Nash predictions

15 Meyer et al. (1992) also report some evidence that does not square
with either the symmetric Nash or the quantal response predictions
of our model. In particular, the frequency with which subjects switch
markets is lower than the predicted frequency (50%). We conjecture
that this “inertia” could be explained by an asymmetric quantal re-
sponse equilibrium in which some people tend to enter with higher
probability than others.
16 The number of prizes was either 2, 4, 6, or 8, yielding equilibrium
numbers of entrants (c + 5) of 7, 9, 11, or 13 respectively, which are
always greater than or equal to half the group size (14–16).
17 Camerer and Lovallo (1992) also report a second treatment in
which subjects are told beforehand that their performance on sports
or current events trivia will determine their payoff. This creates a
selection bias, since people that participate in the experiment are
more likely to think they will rank high when they enter (i.e., they
are “overconfident”), neglecting the fact that other participants think
the same (“reference group neglect”). Camerer and Lovallo propose
overconfidence and reference group neglect as a possible explanation
of the over-entry that occurs in this second treatment. This explana-
tion is quite plausible, in that it is analogous to the failure to perceive
a selection bias that causes winners in a common-value auction to
be the ones who overestimated its value. Note that overconfidence
cannot be the whole story, however, since this bias does not explain
under-entry in their baseline treatment.
18 To derive this symmetric mixed equilibrium, note that the ex-
pected number of other people who enter is (N − 1)p, so if a per-
son enters, the expected total number of entrants is 1 + (N − 1)p.
Then π(n) can be used to calculate the expected payoff for entering:
πe(p, N − 1) = 1 + 2(c − 1) − (N − 1)2p and the Nash equilibrium
probability of entering follows by equating this expected payoff to
the exit payoff of one, which yields the result in the text.

FIGURE 3. Nash Predictions (Solid Line) and
Observed Entry Probabilities (Diamonds)
(Source: Sundali, Rapoport, and Seale 1995)

shown as the 45◦ line. Since each subject participated
in 10 “runs” and there were three groups of 20 sub-
jects, a data point in the figure is the average of
10 ∗ 3 ∗ 20 = 600 entry decisions. Note that the entry
frequency is generally higher than predicted by Nash
for p∗ < 1/2 and lower than predicted for p∗ > 1/2, in
line with the quantal response equilibrium predictions.

To summarize, the quantal response analysis ex-
plains the “magical” conformity to Nash entry predic-
tions (e.g., Meyer et al. 1992), the under-entry in the
Camerer and Lovallo 1999 baseline, the over-entry with
many potential entrants observed by Fischbacher and
Thöni (2001), and the systematic pattern of deviations
from Nash predictions reported by Sundali, Rapoport,
and Seale (1995). This general approach can be adapted
to evaluate behavior in other contexts where payoffs
for one decision are diminished as a result of congestion
effects, as the next section illustrates.19

THE VOLUNTEER’S DILEMMA

There are many situations in which a player’s decision
to participate benefits others. In collective action prob-
lems, for instance, the contributions of some have pos-
itive returns for everyone involved, and these returns
are increasing in the number of contributors. In some
contexts, the critical number of participants is one, e.g.,

19 The analysis presented here does not apply directly to the ex-
periments reported in Ochs 1990, since his experiments involved
more than two market locations, each with a different “capacity”
that determined the number of entrants that could be accommodated
profitably. Nevertheless, the data patterns with random regrouping
(“high turnover”) are suggestive of the quantal response results de-
rived here. The locations with the most capacity (and high probabil-
ities) consistently have a lower frequency of entry than required for
a mixed-strategy Nash equilibrium, whereas the opposite tendency
was observed for locations with the capacity to accommodate only
one entrant profitably.
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TABLE 1. Frequencies of Individual
Volunteer Decisions (p) and of “No
Volunteer” Outcomes
N p P(No Volunteer)

2 .65 .12
3 .58 .07
5 .43 .06
7 .25 .13
9 .35 .02

21 .30 .00
51 .20 .00

101 .35 .00
Source: Franzen(1995).

when a volunteer is needed to issue a politically risky
veto or sanction a group member who violated a norm.
The dilemma in these situations is that volunteering
is costly and players have an incentive to free ride on
others’ benevolence.

In the volunteer’s dilemma game studied here
(Diekmann 1986), all players receive a benefit B if at
least one of them incurs a cost, C < B. In this case,
the expected payoff of participation, or “volunteer-
ing,” is simply a constant, B − C. The expected pay-
off from “exiting” follows from the observation that
when the N − 1 others volunteer with probability p,
there is a (1 − p)N−1 chance that no one volunteers, so
ce(p, N − 1) = B(1 − (1 − p)N−1). Note that the vol-
unteer’s dilemma game satisfies the assumptions under-
lying Figure 1, i.e., the difference between the expected
payoff of participating and that of exiting is decreasing
in p. The Nash probability of volunteering follows by
equating these expected payoffs (as per Eq. [2]) to
obtain

p∗ = 1 −
(

C
B

) 1
N−1

. (3)

This probability of volunteering has the intuitive prop-
erties that it is increasing in the benefit, B, decreas-
ing in the cost, C, and decreasing in the number of
potential volunteers, N. However, the probability of
getting no volunteers is (1 − p∗)N. By Eq. (3) the
probability of getting no volunteers in a Nash equi-
librium is (C/B)N/(N−1), which is increasing in N, with
lim N→∞P(No Volunteer) = C/B > 0. Unlike the in-
tuitive comparative statics properties mentioned be-
fore, this prediction is not supported by experimen-
tal data. Table 1 reports experimental results for a
one-shot volunteer’s dilemma game with B = 100 and
C = 50 (Franzen 1995). Note that the probability that
any person volunteers is generally declining with N,
as predicted by Nash.20 The probability that no one
volunteers, however, is decreasing in N and converges
to zero instead of C/B = 1/2.

Next, consider the quantal response equilibrium for
the volunteer’s dilemma. Since the difference between
the expected payoff of volunteering that of and exiting

20 Franzen (1995) reports that the group-size effect is significant at
the 5% level using a chi-square test with seven degrees of freedom.

is decreasing in the probability of volunteering, Propo-
sition 1 implies that the QRE probability of volunteer-
ing is unique, decreasing in N and C, and increasing
in B. Interestingly, the introduction of (enough) en-
dogenous noise reverses the unintuitive Nash predic-
tion that the probability of “no volunteer” increases
with N.

Proposition 3. In the quantal response equilibrium
for the volunteer’s dilemma game, the probability that
no one will volunteer is decreasing in the number of
potential volunteers for a sufficiently high error rate,
µ. Furthermore, limN→∞P(No Volunteer) = 0 for any
µ > 0.

The proof of Proposition 3 is given in the Appendix.
The intuition is that, in the presence of noise, the ad-
dition of potential volunteers only results in a small
reduction in the probability of volunteering, and the
net effect is that the chance that someone volunteers
will rise.21

The unintuitive feature of the Nash equilibrium for
the volunteer’s dilemma (i.e., that the probability of
getting no volunteer increases with N) parallels the
result that the chance of convicting an innocent de-
fendant under the unanimity rule (i.e., no acquittal
votes) rises with the size of the jury (Feddersen and
Pesendorfer 1998). The models differ in that jurors
receive private signals about the likelihood that the
defendant is guilty. In the Nash equilibrium, those that
receive a guilty signal vote to convict while those with
an innocent signal randomize between voting to convict
or to acquit. As the jury size increases, an individual
juror’s propensity to vote to acquit with an innocent
signal falls, and the chance that there is not a single
vote to acquit rises. As a result, it becomes more likely
that an innocent defendant is wrongfully convicted
(Feddersen and Pesendorfer 1998). In laboratory jury
voting experiments, subjects tend to vote strategically
as predicted by the Nash equilibrium. However, the
unintuitive numbers effect is not supported by experi-
mental data and is not implied by a quantal response
equilibrium analysis (Guarnaschelli, McKelvey, and
Palfrey 2000).

GAMES WITH MULTIPLE EQUILIBRIA:
STEP-LEVEL PUBLIC GOODS GAMES

In some binary-choice games the expected payoff func-
tion for participating is not decreasing in p. For exam-
ple, in any collective political activity where a critical
mass is required to achieve a desired outcome (e.g.,
regime change), the net reward from participating will
be higher as others become more involved.22 There-
fore, the payoff difference function is increasing in

21 In the extreme case when µ → ∞, players volunteer with prob-
ability one-half, irrespective of the number of potential volunteers,
and the chance that no one volunteers falls exponentially, since the
probability of no volunteer is 2−N.
22 In the discussion that follows we treat the threshold as a sharp
cutoff even though it is more reasonable in most contexts to model
the threshold as a range of participation over which the probability of

207



Anomalous Behavior in Models of Political Participation May 2005

the probability of participation, which permits mul-
tiple crossings as shown in Figure 2. This is intuitive,
since there may exist both low-participation equilib-
ria and high-participation equilibria in such “coordi-
nation” or “assurance” games.23 A particular example
is a step-level public goods game, where N players de-
cide whether or not to “contribute” at cost c. If the
total number of contributions meets or exceeds some
threshold n∗, then the public good is provided and all
players receive a fixed return, V, whether nor not they
contributed. Here we assume that the contribution is
like an effort that is lost if the threshold is not met,
so there is “no rebate.” The threshold n∗ could corres-
pond to a required number of participants in an em-
bargo or signatures on a petition.24

In the standard linear public goods games without a
step, observed contributions in experiments are posi-
tively related to the marginal effect of a contribution on
the value of the public good, known as the marginal per
capita return (MPCR).25 Anderson, Goeree, and Holt
(1998) have shown that a logit quantal response anal-
ysis predicts this widely observed MPCR effect. This
raises the question whether there is a similar measure
or index that would predict the level of contributions
in step-level public goods games. One would intuitively
expect that contributions are positively related to the
total (social) value of the public good (NV) and nega-
tively related to the minimum total cost of providing it
(n∗c). Croson and Marks (2000) have proposed using
the ratio of social value to cost, which they call the “step
return:” SR = NV/n∗c. Based on a meta-analysis of
several step-level public goods games, they conclude,
“. . . Subjects respond to the step return just as they
correspond to the marginal per capita return (MPCR)
in linear public goods games: higher step returns lead
to more contributions.”

First, we consider whether there is a clear theoret-
ical basis for expecting contributions to be positively
related to step return measures. A contribution in this
game pays off only when it is pivotal, i.e., when exactly
n∗ − 1 others contribute, which happens with probabi-
lity (

N − 1
n∗ − 1

)
pn∗−1(1 − p)N−n∗

, (4)

where, as before, p denotes the probability that others
participate. The difference between the expected
payoff of contributing and that of not contributing is

success is sharply increasing. The use of a sharp cutoff simplifies the
analysis and is standard in the literature (see, e.g., Lohmann 1994).
23 Stability arguments can often be used to rule out the middle
equilibrium if there are three crossings as in Figure 2. For low µ,
this middle equilibrium is usually close to a mixed Nash equilibrium
with “perverse” comparative statics properties. The high- and low-
participation equilibria then correspond to low-effort and high-effort
pure-strategy Nash equilibria that often arise in coordination games.
24 Gilligan (2003) considers the problem of determining the “cor-
rect” number of countries needed to ratify a treaty. A higher thresh-
old indicating broader support typically requires a less restrictive
agreement.
25 This literature is surveyed in Ostrom’s (1998) presidential address
to the American Political Science Association and in Miller 1997.

FIGURE 4. Expected-Payoff-Differences and
the Inverse Distribution Line for Different
Thresholds in Step-Level Public Goods Games

therefore

πe(p, N − 1) − ce(p, N − 1)

= V
(

N − 1
n∗ − 1

)
pn∗−1(1 − p)N−n∗ − c. (5)

The right side is a single-peaked function of p, and
equating its derivative to zero yields a unique max-
imum at p = (n∗ − 1)/(N − 1). Figure 4, drawn for
V = 6, c = 1, and N = 10, shows these “hillshaped”
expected-payoff-difference lines for three values of the
threshold: n∗ = 3, 5, 8. (Please ignore the “n∗ = {5, 8}”
line, which pertains to a multiple-step case considered
later.) In each case there are two Nash equilibria in
mixed strategies, determined by the crossings of the
thin line with the horizontal line at zero. The inverse
distribution line is plotted for the case of a logistic
distribution, i.e., F(x) = 1/(1 + exp(−x)), and µ = 1.
As before, the intersection of the inverse distribution
line with the thin lines determines the quantal response
equilibrium, which is unique for all three values of the
threshold in this numerical example.26

Recall that the step return is NV/n∗c, which is in-
creasing in N and V and decreasing in n∗ and c. In
order to evaluate these properties in the context of
the quantal response predictions, note that the bell-
shaped nature of the expected payoff differences im-
plies that there may be multiple quantal response equi-
libria. It follows from Proposition 1, however, that any
factor that shifts the expected payoff difference line
upward will raise the equilibrium probability in a stable

26 More generally, when the expected-payoff-difference line is in-
creasing there may be multiple equilibria for some values of the
error rate µ. For instance, a slight upward shift in the “n∗ = 8” line
in Figure 4 would result in three quantal response equilibria. The
stability analysis associated with Figure 2 can be used to show that
the middle equilibrium is unstable; see also Fey 1997 and Palfrey
and Rosenthal 1988. The likelihood of having multiple equilibria
is increased when µ is small and the µF−1(p) line is essentially
horizontal for p between zero and one.
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equilibrium. Since the difference in Eq. (5) is increasing
in V and decreasing in c, we conclude that the equi-
librium contribution probability will be increasing in
V and decreasing in c, just as indicated by the step
return effect. Next, consider the effect of the numbers
variables, N and n∗, beginning with a somewhat infor-
mal graphical analysis (precise results are presented
in Proposition 4, below). Recall that the maximum of
the expected-payoff-difference “hill” is at a probability
of (n∗ − 1)/(N − 1), so an increase in N tends to shift
this function to the left. Note that a leftward shift in
the thin line labeled n∗ = 3 in Figure 4 will lower the
equilibrium probability, but a slight leftward shift in the
line labeled n∗ = 8 will move the intersection point up
along the thick line and, hence, will raise the quantal
response equilibrium probability. Thus an increase in N
can result in a decrease in the equilibrium probability
when the threshold is low and an increase when the
threshold is high.27 The effects of changes in the thresh-
old, n∗, are similar. Note that the quantal response
probability of contributing does not decrease mono-
tonically with the threshold: when n∗ increases from 3
to 5, the equilibrium probability increases from .43 to
.56, and then drops to .27 when n∗ = 8. The intuition is
that when the threshold rises and it is still likely that the
public good will be provided, individual contributions
will rise, but contributions drop dramatically when too
many contributions are needed for provision. To sum-
marize, in a quantal response equilibrium, a higher step
return ratio leads to more contributions when it is due
to a higher total value of the public good or a lower
cost of provision, but not necessarily when it is due to
an increase in the number of potential contributors or
to a lower threshold. Thus the (admittedly theoretical)
analysis here yields only qualified support for the use of
the step return as a rough measure of the propensity to
contribute in a binary step-level public goods game.28

Of course, even when individual contributions rise
in response to the increased threshold, the probability
that the public good is actually provided may decrease,
since more people are needed to meet the threshold.
For the numeric example represented in Figure 4, the
probability of success drops from .83 to .62 to practi-
cally zero when n∗ is increased from 3 to 5 to 8. van
de Kragt, Orbell, and Dawes (1983) report an experi-
ment that implemented a step-level public goods game
with binary contributions and found that increasing the
number of contributors needed for success reduced the
incidence of successful provision. The next proposition
shows that these findings are in line with QRE predic-
tions when there is sufficient noise.

27 See, for instance, Offerman, Schram, and Sonnemans 1997 for
experimental evidence on some of these comparative static results.
28 Nor are the numbers effects in a Nash equilibrium necessarily
consistent with the qualitative properties of the step return ratio.
This is because an increase in the threshold n∗ shifts the maximum
of the expected-payoff-difference line to the right in Figure 4, which
is likely to shift the rightmost (stable) mixed Nash equilibrium to the
right. Thus a rise in n∗, which lowers the step return, can raise the
mixed Nash contribution probability.

FIGURE 5. QRE Probabilities of Individual
Contribution and Successful Group Provision
of a Step-Level Public Good, as a Function
of the Provision Point

Proposition 4. For a high enough error rate, µ, the
quantal response equilibrium for the step-level public
goods game is unique and predicts that individual con-
tributions first rise and then fall with the threshold, n∗,
while the probability of successful provision always de-
creases with n∗.

This proposition, which is proved in the Appendix,
is illustrated in Figure 5, which was drawn for the case
where V = 6, c = 1, N = 10, µ = 1.5, and with the pro-
vision point, n∗, varying from 1 to 9. A movement to
the right in the figure corresponds to an increase in the
number of contributors needed for successful provi-
sion, which reduces the probability of success in a quan-
tal response equilibrium. As the step level is increased,
individual contributions first increase to meet the
challenge and then fall as the threshold becomes more
unattainable. Interestingly, Palfrey and Rosenthal
(1988) derive this result in an equivalent manner by
introducing random, individual-specific “joy of giving”
(or “warm-glow” altruism) shocks that are added to a
person’s payoff for a contribution decision.29 Proposi-
tion 4 extends their analysis by showing that the prob-
ability of successful provision is decreasing in n∗.

Finally, it is interesting to see how contribution be-
havior changes as multiple steps, or thresholds, are in-
troduced. Suppose, for instance, that in addition to the
n∗ = 5 threshold, there is another threshold at n∗ = 8:
with five or more contributions, everyone receives a
return of one from the public good, while with eight
contributions or more, the return is two. This multiple-
step case can be analyzed in the same manner as before.

29 The Nash equilibrium for the resulting game of incomplete infor-
mation is mathematically equivalent to a quantal response equilib-
rium. Palfrey and Rosenthal (1988) prove that individual contribu-
tions first rise and then fall with the threshold (see their Table 2).
They also show that the number of potential contributors, N, has the
reverse effect: individual contributions first fall and then rise with
increases in N.
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Now there are two points at which one’s contribution
can be pivotal, and the expected payoff is the sum of the
two effects. In terms of Figure 4, the expected payoff
lines for n∗ = 5 and n∗ = 8 get “summed,” as indicated
by the n∗ = {5, 8} line in Figure 4 (the cost of con-
tributing only enters once, which is why the endpoints
of this are still at −1). The introduction of the extra
threshold at n∗ = 8, which by itself results in a low
contribution probability, dramatically increases contri-
butions: the QRE contribution probability is .73 and
the probability that at least five people contribute is as
high as .97. An immediate extension of this analysis
is that adding more steps, without reducing the payoff
increment at any of the existing steps, will increase
quantal response contribution probabilities in a binary
public goods game.

VOTING PARTICIPATION GAMES

Another binary choice of considerable interest is the
decision whether or not to vote in a small-group sit-
uation where voting is costly and a single vote has
a nonnegligible effect on the final outcome, e.g., the
decision whether to attend a faculty meeting on a busy
day. The analysis is similar to that of a step-level pub-
lic goods game, since the threshold contribution, n∗,
corresponds to the number of votes needed to pass a
favored bill. In a real voting contest, however, the vote
total required to win is endogenously determined by
the number of people voting against the bill. If there
are two types of voters, those who favor a bill and
those who oppose, then the equilibrium will be char-
acterized by a participation probability for each type.
Here we restrict attention to a symmetric model with
equal numbers of voters of each type, equal costs of
voting, c, and symmetric valuations: V if the preferred
outcome receives more votes and zero otherwise. Ties
in this majority rule game are decided by the flip of
a coin. Note that the public goods incentives to free-
ride are still present in this game, since voters benefit
when their side wins, regardless of whether or not they
incurred the cost of voting.

The analysis of the majority voting game is a straight-
forward application of the approach taken in the pre-
vious sections. The gain from a favorable outcome is V,
so the expected-payoff-difference is V times the prob-
ability that one’s vote affects the outcome minus the
cost of voting. (Obviously, the net cost of voting could
be small or even negative if voting is psychologically
rewarding or if there are social pressures to vote, e.g.,
to attend a faculty meeting.) Since a tie is decided by
the flip of a coin, the probability that a vote is piv-
otal is one-half times the probability that it creates or
breaks a tie. In a symmetric equilibrium with common
participation probability, p, it is straightforward to use
the binomial formulas to calculate these probabilities,
and the expected payoff difference for voting is then
V/2 times this “influence probability” minus the cost of
voting.30

30 Suppose there are two groups of equal size, N, and consider a
player in group 1. The player’s vote is pivotal only when the number

FIGURE 6. Nash and Quantal Response
Voting Probabilities Under Majority and
Proportional Rules

Figure 6 shows the expected-payoff-difference as
a function of the common participation probability,
which is labeled “majority rule.” The parameters that
were used to construct this figure are taken from
Schram and Sonnemans (1996b), who conducted an ex-
periment based on this game form with N = 6, V = 2.5,
and c = 1. The “U” shape of the expected-payoff-
difference reflects the fact that a costly vote is wasted
when the preferred outcome is already winning or
when it cannot win even with an extra vote. Indeed,
the expected value of a vote is highest when either no
one else or everyone else votes, since a vote is then
guaranteed to be pivotal by breaking or creating a tie.
In contrast, when all others vote with probability 1/2,
one extra vote is likely to be superfluous or not enough
and its expected value is therefore small. As in previous
sections, the mixed Nash prediction is determined by
where the expected-payoff-difference line crosses the
zero line: there are two Nash equilibria, one in which
almost no one votes and another in which almost ev-
eryone votes (Palfrey and Rosenthal 1983).

The quantal response equilibrium is determined by
the intersection of the expected-payoff-difference line
and the inverse distribution function (thick lines).31

of voters in group 1 is equal to n2 − 1 or n2, where n2 denotes the
number of voters in group 2, which happens with probability

N∑
n2=1

(
N
n2

)(
N − 1
n2 − 1

)
p2n2−1(1 − p)2N−2n2

+
N−1∑
n2=0

(
N
n2

)(
N − 1

n2

)
p2n2 (1 − p)2N−2n2−1,

where, as before, p denotes the probability with which all others (in
both groups) vote. The first term represents the probability that a tie
is created and the second term is the probability that a tie is broken.
A player’s expected payoff is V/2 times this “influence probability”
minus c, the cost of voting.
31 Palfrey and Rosenthal (1985) use essentially the same techniques
to determine the Bayesian–Nash equilibrium in a voting game with
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The µ parameter of .8 used to construct the steeper
line was selected so that the QRE prediction would
be at about the same level (30% to 50%) as the vote
participation probabilities reported by Schram and
Sonnemans (1996b) in the initial periods of their ex-
periment. Interestingly, the voting probabilities started
high and then decreased to stabilize somewhere in the
20% to 30% range. This downward trend is crudely
captured by a reduction in the noise parameter µ to .4
as indicated by the second inverse distribution line in
Figure 6.32

Schram and Sonnemans (1996b) also considered a
“proportional rule” game in which the payoff for all
participants is the proportion of votes for their pre-
ferred outcome, minus the cost of voting if they voted.
Again, it is straightforward to use the binomial for-
mula to calculate the expected proportion of favorable
votes, contingent on one’s own decision of whether
to vote, as a function of the common participation
probability, p.33 The expected payoff difference for
this proportional representation game is the increase
in the expected proportion of favorable votes, minus
the cost of voting. This difference is declining every-
where because one’s vote has a smaller impact on the
vote proportion as the probability of others’ participa-
tion increases. The expected-payoff-difference line is
labeled “proportional rule” in Figure 6, where the pa-
rameters are again taken from Schram and Sonnemans
(1996b): N = 6, V = 2.22, and c = 0.7. The Schram and
Sonnemans data for the proportional rule experiments,
plotted as the lower line in Figure 7, started in the 30%
to 40% range and ended up between 20% and 30%
in the final periods. Note that participation is initially
higher with the majority rule than with the proportional
rule, while this difference disappears in the final peri-
ods of the experiment when the voting probabilities
are close to 25%, well above the Nash predictions for
these games. This result is not surprising from a QRE
point of view, since the two expected-payoff-difference
lines cross at p = .25, at which they intersect with the
inverse distribution line (for µ = .4). The result, how-
ever, is unexplainable by a Nash analysis for which
the intersection of the two expected-payoff-difference
lines plays no role and only “crossings at zero” mat-

incomplete information. In their paper, individual cost-of-voting
shocks are added to each person’s payoffs. The resulting Bayesian–
Nash equilibrium is mathematically equivalent to a quantal response
equilibrium.
32 Alternatively, this downward adjustment could be explained by
the µ = .4 line, together with the dynamic stability argument under
To Participate or Not? (above), which produces directional move-
ments of the type indicated by the arrows on the horizontal axis in
Figure 2.
33 Using the same notation as before, the expected payoff difference
for a player in group 1 is

V
N−1∑
n1=0

N∑
n2=0

(
N − 1

n1

)(
N
n2

) [
n1 + 1

n1 + n2 + 1
− n1

n1 + n2

]

× pn1+n2 (1 − p)2N−n1−n2−1 − c.

where the outside sum pertains to the decisions of the N − 1 others
of one’s own type, and the inside sum pertains to the N voters of the
other type.

FIGURE 7. Voting Participation Rates with
Random Matching (Source: Schram and
Sonnemans 1996b)

ter. For the parameter values of the experiment, these
crossings are at p = .05 and p = .95 for the majority
rule treatment and at p = .09 for the proportional rule
treatment, and seem to have little predictive power
for the results of the Schram and Sonnemans 1996b
experiment.34 To summarize, both the qualitative data
patterns and the magnitude of the observed voting
probabilities are consistent with a QRE analysis (but
not with Nash), as can be seen from Figures 6 and 7.35

This general approach may be extended to cover
cases with asymmetries, e.g., when one type is more
numerous than another. With asymmetries, the equi-
librium will consist of a participation probability for
each type. These two probabilities will be determined
by two equations analogous to Eq. (1), with the ex-
pected payoff for participation (voting) being a func-
tion of the number of potential voters of each type
and the equilibrium participation probabilities. While
a simple graphical analysis of this asymmetric model
is not possible, it is straightforward to proceed with
numerical calculations, for example, to show that the
smaller group is more likely to vote when the costs of
voting are symmetric (Palfrey and Rosenthal 1983).36

CONCLUSION

Many strategic situations are characterized by binary
decisions, e.g., whether or not to vote, volunteer,

34 See also Schram and Sonnemans 1996a for a similar experiment
with slightly different parameter values.
35 Note from Figure 6 that the participation probabilities predicted
by the quantal response equilibrium are roughly the same under
majority rule and proportional rule. This similarity is due to the
specific parameters used in the experiment and cannot be interpreted
as a general empirical prediction.
36 Cohen and Noll (1991) report that members of the majority coali-
tion abstain more frequently in congressional roll call votes than
members of the minority coalition. Cohen and Noll note that one
cost of voting is that of alienating some of the constituents who
might disagree on the proper vote of their representative.
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attend a congested event, or perform a costly task
with social benefits. In this paper we present a simple
model of equilibrium behavior that applies to a wide
variety of seemingly unrelated binary-choice games,
including coordination, public goods, entry, voting par-
ticipation, and volunteer’s dilemma games. The model
captures the feature that the decision, whether or not
to participate, may be affected by randomness, either
in preferences (e.g., entry or voting costs) or in deci-
sion making (due to perception or calculation errors).
The resulting quantal response equilibrium (McKelvey
and Palfrey 1995) incorporates this randomness in
the form of an error parameter and nests the stan-
dard rational-choice Nash equilibrium as a limiting
case.

The quantal response equilibrium tracks many be-
havioral deviations from Nash predictions, e.g., the
tendency for entry to match the Nash predictions when
the prediction is one-half and for excess entry when
the Nash prediction is below one-half. In other words,
a model with behavioral noise is capable of explaining
the “magical” accuracy of Nash predictions in some
experiments and the systematic deviations in others.
The observed over-entry when Nash predictions are
low is analogous to the over-participation in voting
experiments, which is explained by a quantal response
analysis. The participation rates in these experiments
are roughly the same for the majority and proportional
outcome rule treatments, which are consistent with the-
oretical calculations for the parameters used in the ex-
periments. Similarly, the quantal response model tracks
intuitive “numbers effects” observed in volunteers’
dilemma and step-level public goods experiments, both
when these effects are consistent with Nash predictions
and when they are not.

The quantal response equilibrium generalizes the
standard Nash theory by allowing for stochastic ele-
ments. The scale of these elements, as measured by the
error rate µ, determines how closely decisions match
perfect-rationality predictions. Despite the unspecified
nature of the stochastic elements, the quantal response
equilibrium provides clear, falsifiable predictions for
many of the binary-choice models considered in this
paper. For example, the predicted participation prob-
abilities for the entry games are less extreme than
the Nash predictions (i.e., they lie between one-half
and the mixed-strategy Nash equilibrium) for any er-
ror distribution F. Similarly, the predicted volunteer
rates for the volunteer’s dilemma are less extreme
than the Nash predictions since the expected-payoff-
difference is decreasing in the probability of volun-
teering. In addition, there are key differences between
Nash and quantal response equilibrium predictions
such as the effect of large numbers on the probabil-
ity of getting at least one volunteer or one vote to
acquit under unanimity. Taken together, these results
indicate that standard “rational-choice” game theory
can be enriched in a manner that increases its behav-
ioral relevance for a wide class of situations. More-
over, the simple nature of the graphical equilibrium
analysis will aid researchers in other binary-choice
applications.

APPENDIX

Proof of Proposition 3

The probability, P, that no one volunteers is given by
(1 − p)N, where the QRE probability of volunteering, p, sat-
isfies:

µF−1(p) = B(1 − p)N−1 − C. (A1)

Combining these equations and using the fact that F−1(p) is
symmetric, i.e., F−1(p) = −F−1(1 − p), allows one to express
(A1) in terms of the probability that no one volunteers:

µF−1(P
1
N
) = C − BP

N−1
N , (A2)

from which the derivative of P with respect to N can be
established as

dP
dN

= −P log(P)
N

Bf
(
F−1

(
P1/N

)) − µP−1+2/N

(N − 1)Bf
(
F−1

(
P1/N

)) + µP−1+2/N
.

Note that dP/dN can only be nonnegative when µ ≤
P1−(2/N)Bf(F−1(P1/N)). The right side of this inequality is
bounded by Bmax(f ), so dP/dN has to be negative for large
enough µ. Finally, suppose, in contradiction, that limN→∞
P > 0. This implies that P1/N tends to 1, so µF−1(P1/N) → ∞
when µ > 0. This contradicts (A2) since the right side limits to
C-BP, which is finite. Hence, P tends to zero when N tends
to infinity. In fact, from (A2) it follows that for large N, P
converges to F(C/µ)N, which tends to zero since F(C/µ) < 1
for µ > 0. QED.

Proof of Proposition 4

The QRE probability of contributing, p, satisfies

µF−1(p) = VPN
w (p) − c, (A3)

where w ≥ 1 denotes the threshold and PN
w (p) is the proba-

bility that w − 1 of the N − 1 others contributed (see Eq. [6]).
The solution to (A3) is unique when the derivative of
the left side is everywhere greater than that of the right
side. The derivative of PN

w (p) with respect to p is given by
((w − 1)/p − (N − w)/(1 − p))PN

w (p) and the relevant con-
dition for uniqueness is therefore

µ > Vf(F−1(p))((w − 1)/p − (N − w)/(1 − p))PN
w , (A4)

Note that the right side is negative when w = 1, and for w ≥ 2
it is less than Vf(F−1(p))PN

w (w − 1)/p. The latter expression
can be rewritten (N − 1)Vf(F−1(p))PN−1

w−1 , which is bounded
by (N − 1)V max(f ). So for µ > (N − 1)V max(f ), the quan-
tal response probability of contributing is unique for all val-
ues of the threshold. The derivative of PN

w (p) with respect to
w < N (holding p fixed) is PN

w+1(p) − PN
w (p), which simplifies

to PN
w (p)(1 − w/(N − w)(1 − p)/p). Together with (A3) this

implies that the derivative of the QRE probability, p, with
respect to the threshold, w, is given by

dp
dw

= 1 − p
N − w

× Vf(F−1(p))((N − w)/(1 − p) − w/p)PN
w

µ + Vf(F−1(p))((N − w)/(1 − p) − (w − 1)/p)PN
w

,

(A5)

Note that the denominator of the second fraction on the
right side is positive when the condition for a unique QRE
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(Eq. [A4]) is satisfied. The sign of dp/dw is then determined
by the numerator, which is positive iff p ≥ w/N. The intu-
ition for this result is straightforward: as long as the “inverse
distribution” line intersects the “expected-payoff-difference”
line to the right of its maximum (i.e., p > w/N), an increase
in w shifts the expected-payoff-difference to the right and
moves the intersection point upward. The reverse happens
for higher values of w when the inverse distribution line cuts
the expected-payoff-difference line to the left of the maxi-
mum (see also Palfrey and Rosenthal 1982).

The probability, QN
w , that the public good is provided is

given by

QN
w =

N∑
k=w

(
N
k

)
pk(1 − p)N−k,

and its derivative with respect to w (for w < N) is

dQN
w

dw
= QN

w+1 − QN
w + dQN

w

dp
dp
dw

= NPN
w

(
dp
dw

− 1 − p
N − w

)
.

(A6)

Combining (A5) and (A6) shows that QN
w is decreasing in w.

QED.
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