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Abstract

This paper reports results from social learning experiments where subjects choose be-
tween two options and each subject has a small chance of being perfectly informed about
which option is correct. In treatment “sequence,” subjects observe the entire sequence of
predecessors’ choices while in treatment “no-sequence” they only observe the number of
times each option has been chosen. The theoretical predictions are that subjects follow
their immediate predecessors in treatment sequence and follow the minority in treatment
no-sequence (Callander and Hörner, 2009). The former prediction is borne out in the
data, but subjects tend to follow the majority in treatment no-sequence. We observe
substantial heterogeneity in levels of strategic thinking, as predicted by level-k and Cog-
nitive Hierarchy. While these models reproduce some features of our data, their fit is poor
because of the assumed best-response behavior. Allowing for some degree of “trembling”
improves the fit significantly, especially if subjects are aware that others tremble, as in
logit-QRE. The “noisy introspection” model proposed by Goeree and Holt (2004), which
combines different levels of thinking with error-prone behavior, best describes the data.
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1. Introduction

When people are imperfectly informed they may try to learn from others’ choices. Prospective

graduate students, for instance, often inquire which schools other students chose to apply to.

Teenagers consult the charts before deciding what music to buy and tourists tend to prefer well

occupied restaurants to half empty competitors. In many of these situations, only the choices

made can be observed not the exact information others had when making their choices. And

while in some instances the exact sequence of predecessors’ choices is observed (as in the US

primary elections) more often only aggregate statistics based on those choices are available (e.g.

the number of diners in a restaurant).

When do others’ decisions contain relevant information and what course of action do they

suggest? Obviously, predecessors’ choices matter only when their payoffs are correlated to some

extent. For this reason, most of the social learning literature makes the simplifying assumption

that agents have identical values for the available options, as is the case, for instance, when

buying stocks.1 In this common-value environment, folk wisdom suggests it would be best to

follow the majority, an intuition that is formalized by theoretical models of social learning.

Bikhchandani, Hirschleifer, and Welch (1992), for example, consider a model where agents are

privately informed about which of two options is better and the quality of information is the

same across agents. They demonstrate that after a few decisions, information cascades occur

and all agents herd on the majority choice regardless of their private information.2 Following

the majority is also optimal in Banerjee’s (1992) model where uninformed agents have the

ability to signal that they have no information.

In contrast, Callander and Hörner (2009) consider a situation where it can be optimal to

follow the minority. In their model, agents differ in terms of the quality of information they

possess and observe only the number of decisions for each option. In this paper, we consider

the following simplified version of their model: each agent has a small chance of being perfectly

informed about which of two options is correct or gets no information at all (besides the prior

information that puts equal weight on both options). The information agents receive and

1Exceptions include Smith and Sørensen (2000) and Goeree et al. (2006, 2007) who study social learning with
heterogeneous payoffs. Others’ choices are also important when network externalities are present, e.g. using
the same technology standard. See Hung and Plott (2000) and Drehmann et al. (2005b) for sequential decision
making experiments with informational and payoff externalities. Cipriani and Guarino (2005), Drehmann et al.
(2005a), and Bose et al. (2009) consider situations where predecessors’ choices affect payoffs by changing the
prices of the alternatives.

2Laboratory evidence provides partial support for these predictions in the sense that information cascades
do occur but are often broken. In addition, subjects tend to overweigh their private information vis-à-vis that
contained in publicly observable predecessors’ choices (see, e.g., Anderson and Holt, 1997; Çelen and Kariv,
2004a,b; Goeree et al., 2006, 2007).
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the order in which they move are exogenously determined.3 Finally, the probability of being

informed is low enough such that, under common knowledge of rationality, it is always optimal

to follow the minority. This result is explained in more detail below, but to glean some intuition

consider an uninformed agent who learns that two predecessors have chosen restaurant A and

one has chosen restaurant B. Such an outcome can occur only when the second or third

agent were informed (or both, but this case is relatively unlikely when the probability of being

informed is low). If the second agent was informed then the third agent faced a tie and chose

randomly, in which case following the minority is no worse than following the majority. And if

the third agent was informed, it is strictly better to follow the minority.

This simple logic extends to more general minority-majority divisions if common knowledge

of rationality can be subsumed (see Callander and Hörner, 2009). But once we introduce the

possibility of “trembles” or mistakes, it breaks down. Goeree et al. (2007), for example, find

that in standard social learning experiments (based on Bikhchandani et al., 1992), cascades

do form but almost never last as subjects frequently opt to follow their contrary information

and break the cascade.4 While uninformed agents in our experiment do not possess any pri-

vate information,5 trembles may still occur especially because the information conveyed by

predecessors’ choices may be of low quality and value. Intuitively, the possibility of trembles

greatly alters equilibrium predictions in the Callander–Hörner setup. In the example above,

for instance, the 2-1 division between restaurants is more likely caused by an uninformed agent

deviating when the probability of being informed is very low.

More generally, whether it is optimal to follow the majority or the “deviant minority” there-

fore depends on the likelihood of mistakes, the quality of others’ information, the correlation in

tastes, etc. It would be hard to distinguish these confounding elements in data from the field,

which is why we turn to the lab. We conducted two types of sequential decision-making exper-

iments: in treatment “sequence,” agents can see the entire sequence of predecessors’ decisions

and in treatment “no-sequence” they only see the number of predecessors’ choices for either

option. Collecting data from both treatments allows us to connect our findings to prior litera-

ture, which mostly employs the sequence treatment, and enables us to evaluate the efficiency

gains that may result from the additional information in treatment sequence.

3Kübler and Weizsäcker (2004) present a study where the information available to decision makers is en-
dogenous, while Ottaviani and Sørensen (2001) allow the sequence of decision makers to be endogenous.

4In these experiments, cascade breaks are informative and prevent the learning process from getting stuck.
As a result, full information aggregation becomes possible in the limit as the number of agents grows large.
Goeree et al. (2007) demonstrate how a logit quantal response model can account for much of the dynamics in
the experiments.

5Previous social learning experiments have documented the tendency of subjects to overweigh their private
information. This is not possible in our design, since subjects get either no information or information that is
perfectly informative.
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We find that informed subjects always follow their signal, i.e. they always pick the correct

option. On average, uninformed subjects tend to follow unanimous predecessors close to 90%

of the time both in treatments sequence and no-sequence. Furthermore, the frequency with

which unanimous predecessors are followed significantly rises (to levels between 90% and 100%)

as the number of predecessors grows. This high percentage of rational choices is maybe not

surprising given that the decision problem faced by an uninformed agent is relatively easy when

all predecessors agree. When there is a deviator in treatment sequence, the rational choice is

to follow such a deviator but subjects in the experiment tend to follow the deviator only 72%

of the time. The frequency with which a deviator is followed is significantly higher when the

deviator’s choice belongs to the majority (80%) than when it belongs to the minority of previous

choices (58%). Finally, in treatment no-sequence, subjects tend to follow the minority only 28%

of the time. This percentage significantly declines when the difference between the number of

majority and minority choices grows.

While observed choices deviate from theoretical predictions they are approximate best re-

sponses to the empirical distribution of play in the following sense. Given the choices of others,

and given the signals used in the experiment, the cost of not following unanimous predeces-

sors in the experiment is $1.53 on average. Likewise, the cost of not following a deviator in

treatment sequence is $1.23 on average, and the cost of not following the minority is −$0.36 on

average. In other words, subjects who are (imperfect) profit maximizers would nearly always

follow unanimous predecessors, would more likely than not follow a deviator in treatment se-

quence (although not as frequently as they would follow unanimous predecessors), and would

follow the majority in treatment no-sequence. The canonical model that captures this type of

imperfect maximization behavior is the (logit) QRE model. We show that, on an aggregate

level, logit-QRE is able to reproduce the main features of our data quite well.

In the logit-QRE model, however, agents are assumed to be ex ante symmetric, which is

clearly not true in our data. While some subjects make rational choice in all ten periods of the

experiment, others do so in less than half the periods. This type of heterogeneity is captured

by models that allow for different levels of strategic thinking, such as the level-k model (e.g.

Crawford and Iriberri, 2007a,b) and Cognitive Hierarchy (Camerer, Ho, and Chong, 2004).

When we apply level-k and Cognitive Hierarchy to the data, we find they produce a worse fit

both on an individual and aggregate level. The reason for their poor performance is that these

models subsume best response behavior (given beliefs), except for level-0 who randomizes when

uninformed. The best-response assumption often conflicts with intuitive comparative statics

observed in the data, e.g. subjects tend to follow unanimous predecessors more frequently when

the group of predecessors is large. In addition, the best-response assumption implies that a
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subject who mostly but not always makes a rational choice, is classified as level-0 even though

most of her choices suggest a higher level of thinking.

Goeree and Holt (2004) propose a “noisy introspection” model that blends the idea of

different levels of strategic thinking with noisy responses (trembling). In particular, the noisy

introspection model replaces the strict best responses of the level-k model with logit “better

responses.” Importantly, agents in the noisy introspection model are assumed to be aware

that others tremble. For example, when computing the probability that the minority choice

is correct in treatment no-sequence, agents take into account the possibility that the minority

arose because of trembles. As a result, the model can predict why subsequent choices favor the

majority (not the minority) even for agents with high levels of strategic thinking.

We find that the noisy introspection model fits the data best – it provides a significant

improvement in fit relative to logit-QRE and a dramatic improvement relative to level-k and

Cognitive Hierarchy. To illustrate the importance of the “common-knowledge-of-trembling”

assumption that underlies noisy introspection, we also estimate a noisy version of the level-k

model in which agents tremble but assume others don’t. We find that the noisy level-k model

provides a better fit than level-k and Cognitive Hierarchy, but not nearly as good as noisy

introspection.

The paper is organized as follows. In the next section, we briefly discuss the theoretical

predictions for the two treatments. The experimental design is presented in Section 3. The

results of the experiment can be found in Section 4. In section 5 we apply alternative models

of bounded rationality to explain individual and aggregate outcomes. Section 6 concludes.

2. Theoretical Predictions

Treatment sequence is a simple variant of the social learning model proposed by Bikhchandani,

Hirschleifer, and Welch (1992). There are two options, A and B, that are equally likely to

be correct and a finite set of n agents labeled t = 1, 2, . . . , n. Each agent chooses either A or

B after having observed a private signal st and the decisions of predecessors. Signals in the

experiment are either fully informative or not informative at all: if ω denotes the correct option

then st = ω with probability q > 0 and st = ∅ with probability 1− q.

Given that some agents may be fully informed, the perfect Bayesian equilibria of treatment

sequence are easy to derive. First, an agent with st = ω chooses ω. Second, if all predecessors

agree, then an uninformed agent follows the majority since either all predecessors were unin-

formed and the agent is indifferent or some predecessors were informed and the agent strictly

5



prefers to follow the majority. Third, if predecessors were not unanimous, i.e. choices switched

from one option to the other, then the first predecessor who “deviated” by not following her

predecessors must have been informed. In this case, the agent should follow the deviator. Note

that all three cases can be succinctly summarized as follows: under common knowledge of ra-

tionality, agents follow their immediate predecessor. Finally, if predecessors switched from one

option to the other and then switched back, play is off the equilibrium path. In this case, the

agent cannot infer anything from prior play and simply randomizes when st = ∅ and chooses ω

when st = ω.

In treatment no-sequence, informed agents with st = ω again simply choose ω. Also,

uninformed agents simply follow the majority if all predecessors agree. The surprising result

for treatment no-sequence is that uninformed agents may be better off following the minority, a

result due to Callander and Hörner (2009). To glean some intuition, consider their illustrative

example in which uninformed agent t = 4 has to choose after two predecessors have chosen

option A and 1 predecessor has chosen option B. In this case, agent t = 1 must have been

uninformed and must have chosen the wrong option since otherwise predecessors would have

been unanimous. Furthermore, either (i) agent 2 was uninformed in which case she followed

agent 1 and agent 3 was informed and choose differently from her predecessors, or (ii) agent 2

was informed and choose differently from agent 1 and agent 3 was uninformed and randomly

followed agent 1, or (iii) both agents 2 and 3 were informed and chose differently from agent

1. Under scenario (i) the minority choice is correct, under (ii) both options are equally likely

to be correct, and under (iii) the majority choice is correct. For q < 1
2
, the situation in which

2 agents are informed is less likely, and, hence, the minority is more likely to be correct. A

simple calculation shows that

P1,2(minority is correct) =
3− 3q

4− 2q
(1)

Moreover, for small q, the probability that the minority is correct grows as the majority

increases in size. For example, consider the case where three predecessors have chosen option

A and 1 predecessor has chosen option B. The fourth agent must have faced (i) unanimous

predecessors in which case the minority choice B is correct (if option A were correct the fourth

agent should pick A whether or not informed), or (ii) a 2-1 majority for A in which case the

minority is incorrect (now if option B were correct the fourth agent should pick B whether

or not informed, resulting in a tie). Note that situation (i) only requires the fourth agent to

be informed while situation (ii) requires the fourth agent and at least one other agent to be
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Figure 1: Probability Minority is Correct in Treatment No-sequence with q = 0.2 (Left) and
q = 0.1 (Right) as a Function of the Number of Predecessors (x-axis) and the
Minority Size (Label Next to a Line).

informed. The chance that the minority is correct is now

P1,3(minority is correct) =
2(1− q)2

2(1− q)2 + q(1 + q)
(2)

and it is straightforward to verify that P1,3 > P1,2 for small q. The minority wisdom becomes

even stronger as the majority grows larger than 3: the outcome in which m ≥ 4 predecessors

chose A and only 1 predecessor chose B requires at least m− 1 agents to be informed when the

majority choice A is correct, but requires only the final agent to be informed when the minority

choice B is correct. Furthermore, this logic extends to minorities of sizes different than 1.

Figure 1 shows the relevant probabilities for the experimental setup discussed below: the

left panel corresponds to the case where the probability of being informed is q = 0.2 and the

total number of agents is n = 7, and the right panel corresponds to the case where q = 0.1

and n = 13. In the left panel, the number of predecessors (on the x-axis) is at most 6, and

the minority size can be either 0, 1, or 2, as indicated by the labels next to the three lines

that represent the probabilities the minority is correct for these cases. A minority of size 0

means that predecessors were unanimous in which case the minority choice is more likely to be

incorrect, as indicated by the decreasing line that is everywhere below 0.5. The first two points

of the line labeled “1” can be computed from (1) and (2) above for q = 0.2: note that P1,m

for m = 2, 3, 4, 5 is everywhere above 0.5, i.e. the minority is more likely to be correct, and is

increasing in m, i.e. the minority wisdom becomes stronger as the majority grows. The same

is true for P2,m for m = 3, 4 as shown by the line labeled “2.” The right panel establishes the

same properties for our second treatment in which q = 0.1 and n = 13.
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3. Experimental Design

The experiments were conducted in the Social Science Experimental Laboratory (SSEL) at

Caltech using undergraduate and graduate students as subjects. Each subject was allowed to

participate only once. For each session, we randomly determined the correct option in each of

the ten periods.6 And for each period, we randomly determined for each subject whether she

was informed or not. Since the specific sequence of informed and uninformed agents can affect

efficiency and behavior, we used the same draws for both treatment sequence and treatment

no-sequence. We ran ten sessions for both treatments.

The experiments were run by hand. After reading the instructions out loud, subjects had an

opportunity to ask clarifying questions. We used an urn to select the subject who had to guess

first. The experimenter then went to that subject’s seat and indicated on the subject’s record

sheet whether that subject was informed, and, if so, what the correct option was. Then another

draw without replacement determined which subject had to guess next, etc. Each time, the

experimenter revealed the correct option to only informed subjects. In addition, all subjects,

informed or uninformed, were told the sequence of predecessors’ choices in treatment sequence

and the number of choices for both options in treatment no-sequence.

The main design parameters are the probability that an agent is informed (q) and the

number of subjects participating in a session (n). We chose q and n such that it was optimal

to follow the minority in treatment no-sequence in all possible situations (assuming common

knowledge of rationality). For q = 0.1 the maximum number is n = 13 and for q = 0.2 the

maximum number is n = 7, see Figure 1.7 At the end of each period, the correct option

was revealed to everyone and subjects earned $4 if they had picked the correct option (and 0

otherwise). At the end of the experiment, subjects were paid, in cash, their cumulative earnings

plus a $5 show-up fee. Average earnings for the different treatments are shown in the rightmost

column of Table 1. Sessions with 13 subjects usually took about one hour while sessions with

only seven subjects typically lasted about 35 minutes.

6To avoid a bias for one of the options, we denoted option A with a circle (◦) and option B with a cross
(+) since these symbols have no obvious ordering. Also, there was no practice period that might have allowed
subjects to coordinate their guesses at no cost. To test whether these measures were sufficient to avoid a bias,
we considered the 143 cases were both options had the same number of choices in treatment no-sequence. In
82 of these cases, subjects chose A. Using a two-tailed test and a 5% confidence level, we cannot reject the null
hypothesis that the number of choices of A follows a binomial (143, 0.5) distribution.

7More generally, the larger is q the lower is the largest n for which following the minority is optimal (Callander
and Hörner, 2009).
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Treatment Prob Informed (q) # Subjects (n) # Sessions Earnings

Sequence 0.1 12-13 5 $31.3

Sequence 0.2 7 5 $29.8

No-sequence 0.1 11-13 5 $27.1
No-sequence 0.2 7 5 $26.5

Table 1: Experimental Design Parameters and Subjects’ Earnings.

4. Results

We first discuss the extent to which subject behavior conforms to theoretical predictions. We

pool the data from the q = 0.1 and q = 0.2 sessions since there were no significant differences

between them.

4.1. Subject Behavior

Not surprisingly, informed subjects in the experiment always follow their signals, and, hence,

always select the correct option. In contrast, uninformed subjects do not always choose accord-

ing to their optimal strategy under common knowledge of rationality. We differentiate among

the following situations:

(S1) all predecessors chose the same option.

(S2) one predecessor deviated from his unanimous predecessors in treatment sequence.8

(S3) one option is chosen by a minority of predecessors in treatment no-sequence.

As explained above, rational agents would follow unanimous predecessors in both treat-

ments, a deviator in treatment sequence, and the minority in treatment no-sequence. Figure 2

summarizes the behavior of uninformed subjects in treatment sequence. For each of the ten

sessions we compute the fraction of situations in which subjects follow their optimal strategy

under common knowledge of rationality. The box plot summarizes these ten independent data

points.9

The leftmost box in Figure 2 summarizes behavior in treatment sequence when all predeces-

sors chose the same option. The median frequency with which uninformed subjects follow their

8We are not considering situations in which two or more agents deviated from their immediate predecessor.
In these situations, the assumption of common knowledge of rationality is clearly violated.

9The boundaries of the box correspond to the first and third quartile, the line within the box marks the
median. Observations that are more than 1.5 times the interquartile range higher (lower) than the third (first)
quartile are considered to be outliers and shown separately. The whiskers show the position of the lowest
(highest) observation that is not an outlier.
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Figure 2: Subject Behavior in Treatment Sequence

unanimous predecessors (across ten sessions) is 0.89. In other words, 89% of the time, subject

behavior coincides with the optimal strategy (under common knowledge of rationality) for this

specific situation. The middle box concerns situations in which one predecessor deviated from

his unanimous predecessors. The median frequency with which uninformed subjects follow

such a deviator is 74%. The rightmost box summarizes the difference between the frequency

with which subjects follow unanimous predecessors and the frequency with which they follow

a deviator. In each one of ten sessions, this difference is positive. Treating each session as

an independent observation, this difference is therefore significant using any conventional test.

Subjects in our experiments are more likely to follow unanimous predecessors than to follow a

deviator in treatment sequence.

Figure 3 summarizes the behavior of uninformed subjects in treatment no-sequence. As

in Figure 2, the leftmost box summarizes behavior when subjects face unanimous predeces-

sors. Not surprisingly, the results are very similar to those reported for treatment sequence

(since there is no reason why subjects should behave differently in the two treatments when

all predecessors chose the same option). The median frequency with which subjects follow

unanimous predecessors is now 86%. The middle box concerns situations in which there is

a minority choice among predecessors. Obviously, behavior deviates very strongly from the

optimal strategy under common knowledge of rationality: subjects only follow the minority

about 29% of the time (median over all ten sessions). In fact, in all but one session, subjects

follow the majority more frequently than the minority. Finally, for each of the ten sessions of

treatment no-sequence, we compute the difference between the frequency with which subjects
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Figure 3: Subject Behavior in Treatment No-Sequence

follow unanimous predecessors and the frequency with which they follow the minority. The

results are captured by the rightmost box in Figure 3. Subjects in our experiments are clearly

more likely to follow unanimous predecessors than to follow the minority.

Summing up our findings for the three situations:

(S1) While subjects do not always follow their unanimous predecessors, they do so more than

50% of the time in all 20 sessions.10 Furthermore, the tendency of subjects to follow

their unanimous predecessors becomes stronger as the number of unanimous predecessors

grows. Figure 4 shows the frequency with which unanimous predecessors are followed

when the number of predecessors varies from 1 to 12. A simple Probit regression in which

the dependent variable is the choice to follow unanimous predecessors, Pfollow, and the

independent variable is the number of predecessors, n, results in significant estimates:

Pfollow = Φ(β0 + β1 · n) yields β0 = 0.7(0.1) and β1 = 0.12(0.04), where the numbers in

parentheses denote the robust standard errors (clustered by subject).

(S2) In nine out of ten sessions, subjects follow a deviator in treatment sequence more than 50%

of the time.11 Furthermore, the tendency to follow a deviator is stronger if the choice of

the deviator coincides with the majority choice. Figure 5 shows the frequency with which

a deviator is followed when the deviator’s choice is in the minority (left circle), when there

10We can easily reject the null hypothesis that subjects follow their unanimous predecessors in 50% of all
instances using a Wilcoxon signed-rank test (p < 0.001).

11The null that subjects follow a deviator half of the time in treatment sequence can be rejected using a
Wilcoxon signed-rank test (p = 0.004).
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Figure 4: Frequency with which unanimous predecessors are followed as a function of the
number of unanimous predecessors. The size and color of each circle reflects the
number of occurrences.

is tie (middle circle), and when the deviator’s choice is in the majority (right circle). To

verify whether the observed differences are statistically significant, we estimate a simple

Probit model in which the chance of following a deviator, Pfollow, is explained by whether

there is minority, tie, or majority: Pfollow = Φ(βmin + βtie + βmaj) yields βmin = 0.20(0.23),

βtie = 0.34(0.31), and βmaj = 0.65(0.29), where the numbers in parentheses denote the

robust standard errors (clustered by subject). The difference between βmaj and βmin is

significant at the 5% level.

(S3) In all but one session of treatment no-sequence, subjects follow the majority more fre-

quently than the minority.12 Furthermore, subjects are increasingly less inclined to follow

the minority, the smaller the minority is relative to the majority. (Recall that under com-

mon knowledge of rationality, the wisdom of the minority becomes stronger the smaller

the minority is relative to the majority, see Figure 1.) Figure 6 shows the frequency with

which subjects follow the minority as a function of the difference between the size of the

majority and the size of the minority. A Probit analysis in which the chance of following

the minority, Pfollow, is regressed on the difference between majority and minority sizes,

∆n, results in significant estimates: Pfollow = Φ(β0 + β1 ·∆n) yields β0 = −0.26(0.14) and

β1 = −0.098(0.039), where the numbers in parentheses denote the robust standard errors

(clustered by subject).

12The null that subjects are equally likely to follow the minority or the majority in treatment no-sequence is
rejected using a Wilcoxon signed-rank test (p = 0.004).
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Figure 5: Frequency with which a deviator’s choice is followed when it is in the minority,
creates a tie, or is in the majority. The size and color of each circle reflects the
number of occurrences.

The observed choice frequencies across the three situations can be ranked as follows:13

P(follow unanimous predecessors) > P(follow deviator) >
1

2
> P(follow minority) (3)

In other words, subjects are more likely to follow unanimous predecessors than a deviator, are

more likely to follow unanimous predecessors than the minority, and are more likely to follow

deviators than the minority. It is interesting to compare the ranking of choice frequencies with

that of the associated average payoff differences, computed using the actual signals and choices

of the experiment:

∆π(unanimous predecessors) > ∆π(deviator) > 0 > ∆π(minority)

where ∆π measures the payoff difference between following and not following for each of three

situations. To summarize, given the observed play of others, not following a deviator is a costly

mistake ($1.23), but it is less of a mistake than not following unanimous predecessors ($1.53).

Furthermore, not following the minority is not a mistake, i.e. in the no-sequence sessions,

following the majority yields higher earnings ($0.36).

13Using a Wilcoxon matched-pairs signed-rank test, we can reject the null that subjects follow unanimous
predecessors equally frequently as a deviator in treatment sequence (p = 0.002). Likewise, we can reject the
null that subjects are equally likely to follow unanimous predecessors as the minority in treatment no-sequence
(p = 0.002) and the null that subjects follow deviators equally frequently as the minority (p < 0.001).
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4.2. Efficiency

For the specific draws used in the experiment, the theoretically expected fraction of correct

choices is 78% in treatment sequence and 72% in treatment no-sequence.14 Actual efficiency was

69% in treatment sequence and 62% in treatment no-sequence. Finally, the predicted fraction of

correct choices when uninformed agents choose randomly and informed agents choose correctly

is 58%.

Treating each session as an independent observation (n = 10), we test the null hypothesis

that the distribution of the fraction of correct choices is identical under both treatments. A

Wilcoxon matched-pairs signed-rank test allows us to reject the null (p = 0.039). Therefore,

efficiency in treatment sequence is significantly higher than in treatment no-sequence. We also

test whether observed efficiency is significantly higher than when uninformed subjects choose

randomly and informed subjects choose correctly. Using the same test, we can reject the null

for treatment sequence (p = 0.006) but not for treatment no-sequence (p = 0.432). This result

suggests that information about predecessors’ choices improves efficiency only when the entire

sequence of decisions is known – subjects are not able to improve their decisions when observing

only the number of prior choices for each option.

14We computed the fraction of correct choices separately for each session and then took the average across
sessions.
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5. Explaining Subject Behavior

In this section, we analyze the observed deviations through the lens of alternative models

of bounded rationality, including logit-QRE as well as two models in which agents exhibit

different levels of strategic thinking (level-k and Cognitive Hierarchy). We find that a “noisy

introspection” model (Goeree and Holt, 2004) that combines heterogeneity in strategic thinking

with error-prone behavior fits our data best.

5.1. Logit-QRE

Consider again the example discussed in Section 2, where two predecessors chose option A and

one predecessor chose option B. Whether the minority or majority is more likely to be correct

depends on whether the sequence {uninformed, uninformed, informed}, for which the minority

is correct, is more likely to occur than the sequence {uninformed, informed, informed}, for
which the majority is correct. For q < 0.5, subjects should follow the minority under common

knowledge of rationality. If subjects tremble, however, then the minority is not necessarily

correct even for sequence {uninformed, uninformed, informed} since the second uninformed

subject may not have followed the first one (such a tremble is not unlikely since the associated

payoff loss is small); following the majority may be better as a result.

The above intuition can be formalized using a logit-QRE model in which subjects’ choice

probabilities are positively but not perfectly related to expected payoffs, i.e. subjects are

“better responders” not necessarily “best responders.” For subject t, let Ht denote the profile

of predecessors’ choices and st the subject’s signal. Then the probability that subject t chooses

ct is

P (ct|Ht, st) =
1

1 + exp(λπ(1− 2P (ω = ct|Ht, st))
(4)

where λ is a “rationality” parameter that determines how sensitive choice probabilities are with

respect to expected payoffs and π = $4 is the payoff of picking the correct option. Note that,

since λπ > 0, agents more often choose the option that is more likely to be correct.

The curves in Figure 7 show the predicted probability of following unanimous predecessors,

a deviator, or the minority respectively for different values of λ. (To generate this figure we

averaged predicted logit choice probabilities over all occurrences of the particular situation in

the experiment.) For low levels of λ, logit-QRE predicts that uninformed subjects are more

likely to follow the majority than to follow the minority. The predicted probability of following

a deviator is higher than 0.5 for all λ, and the same is true for the predicted probability of

following unanimous predecessors.
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Figure 7: Uninformed Subjects’ Behavior as a Function of λ in a Logit QRE Model for Situ-
ations that Occurred in the Experiment.

Using maximum-likelihood techniques (treating each decision as an independent observa-

tion) we estimate λ = 1.4 (0.1) for treatment no-sequence, λ = 1.3 (0.1) for treatment sequence,

and λ = 1.3 (0.1) for the pooled data, where the number in parentheses denotes the robust

standard error (clustered by subject). The estimates are listed in the topmost panel of Table 2

below (second column labeled “λ”), together with the associated likelihood (third column la-

beled “LogLobs”), the likelihood that results if all uninformed subjects choose randomly (fourth

column labeled “LogLrandom”), and the best possible likelihood (fifth column labeled “LogLbest”)

that results by using the observed fraction for either option as the predicted fraction (separate

for each different situation that occurred in the experiment).15 The rightmost column in Table 2

labeled “% Explained” provides a “goodness-of-fit” defined as follows:

% Explained =
LogLobs − LogLrandom

LogLbest − LogLrandom

× 100%

The circles in Figure 7 show the average frequency with which subjects in the experiment follow

unanimous predecessors, a deviator, or the minority respectively. The data averages are shown

15We treat two situations as different iff at least one of the models we estimate makes a different prediction
for the two situations. More specifically, (1) we distinguish between informed and uninformed agents, but all
situations informed agents encounter are considered equivalent, (2) the situation where n (m) predecessors have
chosen A (B) is considered equivalent to the situation where m (n) predecessors have chosen A (B), and (3)
situations with an equal number of choices for both options are equivalent.
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Figure 8: Fraction of Rational Choices in Sequence (left) and No-sequence (right)

at the pooled estimate λ = 1.3 to facilitate comparison with logit predictions. Obviously,

Logit-QRE can explain the qualitative patterns of our data as summarized in (3) extremely

well.

5.2. Subject Heterogeneity

The homogeneous logit-QRE model assumes that agents are ex ante symmetric, i.e. they are

equally likely to make mistakes. To test whether this is a reasonable assumption, we compute

the fraction of rational choices for each subject by treatment.16 If all subjects were equally

rational, this fraction would not vary much across subjects.

Figure 8 illustrates the distribution of rational choices separately for treatments sequence

(left) and no-sequence (right). Clearly, there is substantial subject heterogeneity. While the

standard deviation of the fraction of rational choices is very similar in both treatments (0.20 in

sequence and 0.21 in no-sequence), the shape of the distribution is quite different. In treatment

sequence, a fairly high proportion of subjects make choices that are always consistent with

their optimal strategy (under common knowledge of rationality), but this is not the case in

treatment no-sequence.

5.3. Level-k and Cognitive Hierarchy

To account for the observed heterogeneity, we next consider a “level-k model” (e.g. Crawford

and Iriberri, 2007a,b) that allows for different levels of strategic thinking. We first describe

16We only consider situations in which uninformed subjects face a rational and an irrational choice. Hence, we
drop choices made by the first subject in the sequence. We also drop choices made by subjects who face the same
number of predecessors’ choices for both options. In treatment sequence, we drop (“off-the-equilibrium-path”)
choices that occur after two or more predecessors deviated from their immediate predecessor’s choice.
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how different types are defined in this model and then discuss the model’s predictions and the

estimation of the type distribution.

In the level-k model, type k best responds believing others are of type k − 1. We assume

that type 0 chooses randomly when uninformed and follows her signal when informed.17 In

treatment sequence, an uninformed type 1 then follows the majority of predecessors – if all

others are of type 0, the majority is more likely to be correct since type 0 picks the correct

option when informed. Uninformed type 2 follows unanimous predecessors, but since type 1

deviates from the majority only when informed, uninformed type 2 follows such deviations.

Note that it is possible that type 2 observes a sequence that is inconsistent with her beliefs18

in which case type 2 is assumed to randomly pick an option when uninformed and to follow

her signal when informed. Uninformed type 3 behaves the same as type 2 except that there

more situations in which type 3’s beliefs are contradicted, and, hence, type 3 randomizes more

often.19 All higher types (4 and above) are identical to type 3.

In treatment no-sequence, uninformed type 1 follows the majority of predecessors. Unin-

formed type 2 follows unanimous predecessors, and since type 1 only deviates from the majority

when informed, uninformed type 2 follows the minority when predecessors are not unanimous.

Callander and Hörner (2009) show that it is optimal to follow the minority when all others do,

so uninformed types 3 and higher are identical to type 2. In treatment no-sequence, there are

no situations in which beliefs about lower-types’ behavior are contradicted.

To facilitate comparison with the one-parameter logit-QRE model, we assume that types

follow a Poisson distribution with parameter τ , which we truncate at the highest type that

can be distinguished (2 in treatment no-sequence and 3 in treatment sequence).20 Figure 9

summarizes the predictions of the level-k model for the three situations of interest for different

levels of τ . For low τ , the level-k model is able to reproduce the main features of our data as

summarized in (3) although the fit is not as good as that of logit-QRE (cf. Figure 7).

17Under the assumption that type 0 chooses randomly even when informed, type 1 would choose randomly
when uninformed but would follow his signal when informed. Therefore, type 1 would correspond to type 0
under our assumptions. The only change to the model would be an introduction of an additional type that can
only rarely be distinguished from type 1 (since informed agents are rare).

18For instance, if the majority choice switches from A to B after a deviation, then a next deviation (back to
A) would violate the assumption that all other agents are of type 1.

19Observing two or more deviations from the immediate predecessors’ choice violates the assumption that all
agents are of type 2, but if these deviations occur in favor of the majority’s choice then they are compatible with
the assumption that all other agents are of type 1. Therefore, the set of situations that violate the assumptions
made by type 2 is a strict subset of the set of situations that violate the assumptions made by type 3.

20We also estimated the type distribution non-parametrically, see footnote 22.
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We estimate τ separately for treatment sequence and treatment no-sequence by maximizing

L(τ) =
n∏

t=1

m∑
k=0

e−τ τk

k!∑m
v=1

e−τ τv

v!

Prob(ct | type = k) (5)

where n is the number of subjects, m the number of different types (2 in treatment no-sequence

and 3 in treatment sequence), and ct the ten choices made by subject t, i.e. we assume that a

subject’s type is the same for all ten periods.

The estimation results for the level-k model are shown in the second panel of Table 2, and

the third panel provides results for the closely related Cognitive Hierarchy model (Camerer,

Ho, and Chong, 2004).21 Note that level-k and Cognitive Hierarchy fit about the same and

substantially worse than logit-QRE.22

The worse fit could have been expected from Figure 9, which shows that observed choice

frequencies for the three situations of interest (represented by the circles) cannot be matched.

More importantly, because of the best-response assumption underlying level-k, it cannot repro-

duce the intuitive data patterns of Figures 4–6. For example, in level-k, types 1 and 2 follow

unanimous predecessors and they do so irrespective of whether the number of predecessors is

1 or 12. Clearly, this prediction is refuted by the data, see Figure 4 (and a similar argument

applies to Figures 5 and 6).

The data patterns of Figures 4–6 are consistent with models in which choice probabilities

vary continuously with expected payoff differences, i.e. when best responses are replaced by

(logit) better responses. Introducing trembles has the additional benefit that the type distri-

bution can be determined more robustly. Compared to previous experiments, we find a high

fraction of type 0: 70% in treatment no-sequence and 63% in treatment sequence. The reason

is that a subject is classified as type 0 even if her behavior is incompatible with type 1 or 2 in

only a single period. The model presented in the next section avoids this problem.

21Cognitive Hierarchy differs from level-k only in that type k believes that others have types lower than
k, not necessarily that they are all of type k − 1. Choice probabilities in Cognitive Hierarchy do not vary
continuously with τ since a change in τ not only alters the type distribution but it can also shift the best
response (since expected payoff calculations depend on the type-distribution). The likelihood function for the
Cognitive Hierarchy model is not differentiable, and we introduce very small logit trembles (using λ = 20) to
facilitate estimation. As for the level-k model, we assume type 0 picks randomly when uninformed and chooses
the correct option when informed.

22 This remains true when we estimate the type distribution non-parametrically. In treatment sequence,
the estimated fractions of types (0, 1, 2, 3) are (0.68, 0.17, 0.09, 0.05) and the associated loglikelihood is −512.
In treatment no-sequence, the estimated fractions of types (0, 1, 2) are (0.70, 0.26, 0.04) and the associated
loglikelihood is −504. In other words, allowing for an arbitrary type distribution hardly improves the fit
compared to the assumed Poisson distribution of types.
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Figure 9: Uninformed Subjects’ Behavior as a Function of τ in a level-k Model for Situations
that Occurred in the Experiment.

5.4. Noisy Introspection

The noisy introspection model proposed by Goeree and Holt (2004) combines subject het-

erogeneity and error-prone behavior by assuming that (i) subjects differ in levels of strategic

thinking and (ii) subjects realize others are “better responders” and not necessarily “best

responders.” Let ϕλ(·) denote the logit response function, see (4), then type k’s choice proba-

bilities can be recursively defined as Pk = ϕλ ◦ Pk−1, i.e. type k better responds believing that

observed choices are generated by better responders of type k − 1. Equivalently:23

Pk = ϕλ ◦ · · · ◦ ϕλ︸ ︷︷ ︸
k times

◦ϕ0 (6)

So type k better responds to type k−1, who better responds to type k−2, . . ., and type 1 better

responds to type 0 who chooses randomly (since ϕ0 results in uniform choice probabilities).

The noisy introspection model in (6) reduces to the level-k model of the previous section when

λ = ∞, i.e. when logit better responses are replaced by standard best responses.

For finite levels of λ, predicted behavior is different for all types (unlike in the model

23Goeree and Holt (2004) define choice probabilities for the noisy introspection model by considering an
infinite sequence of logit responses: P = limn→∞ ϕλn ◦ · · · ◦ ϕ1 ◦ ϕ0, where λ1 ≤ · · · ≤ λn. Note that this is
equivalent to (6) when λn = · · · = λn−k+1 = λ and λn−k = · · · = λ1 = 0.
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 ! LogLobs LogLrandom LogLbest % Explained

Logit-QRE

Sequence 1.3 (0.1) -417 -686 -364 83.5%

No-sequence 1.4 (0.1) -438 -679 -407 88.6%

Pooled 1.3 (0.1) -856 -1366 -771 85.7%

Level-k

Sequence 0.5 (0.1) -516 -686 -364 52.8%

No-sequence 0.4 (0.1) -504 -679 -407 64.3%

Pooled 0.4 (0.1) -1021 -1366 -771 58.0%

Cognitive Hierarchy

Sequence 1.2 (0.1) -489 -686 -364 61.2%

No-sequence 0.6 (0.1) -504 -679 -407 64.3%

Pooled 1.0 (0.1) -1003 -1366 -771 61.0%

Noisy Level-k

Sequence 1.9 (0.3) 2.0 (0.2) -402 -686 -364 88.2%

No-sequence 1.0 (0.1) 1.6 (0.2) -457 -679 -407 81.6%

Pooled 1.3 (0.1) 1.7 (0.1) -869 -1366 -771 83.5%

Noisy Introspection

Sequence 2.3 (0.3) 1.8 (0.2) -385 -686 -364 93.5%

No-sequence 2.1 (0.4) 1.7 (0.1) -429 -679 -407 91.9%

Pooled 2.2 (0.3) 1.8 (0.1) -815 -1366 -771 92.6%

Table 2: Overview of Different Models, Robust Standard Errors are in Parentheses.

without trembles). To keep the model parsimonious and comparable to level-k, we again

assume that the types follow a Poisson distribution. The estimated parameter values for τ

and λ are shown in the bottom panel of Table 2. They are highly significant, and are higher

than for the corresponding estimates in models that contain either λ or τ . Hence, compared

to the level-k model, the introduction of trembles leads to a right-shift of the type distribution

because subjects whose choices are almost always compatible with a type higher than 0 are

now classified as such. Likewise, introducing types into logit-QRE increases the estimated

rationality parameter because some of the randomness in observed choices is accounted for by

the presence of type 0. Note that noisy introspection provides a significant improvement in fit

relative to logit-QRE and a dramatic improvement relative to level-k and Cognitive Hierarchy.

Previous papers that have allowed for trembles within the level-k framework typically have

assumed that subjects are unaware that others tremble (i.e. only the econometrician assumes

trembles). In other words, subjects compute their expected payoffs under the assumption that

others are best responders (even though they are better responders themselves). To gauge

the importance of the “common-knowledge-of-trembles” assumption, we also estimate a noisy

level-k model that follows by replacing others’ logit responses by best responses:

P̃k = ϕλ ◦ ϕ∞ ◦ · · · ◦ ϕ∞︸ ︷︷ ︸
k − 1 times

◦ϕ0 (7)

Note that in this model, there can be situations in which beliefs are inconsistent with observed
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play. Also, there are now 4 (instead of 3) distinct types in treatment sequence24 (the number

of distinct types does not change for treatment no-sequence).

The estimation results in Table 2 demonstrate that this model fits slightly worse than logit-

QRE, much better than level-k and Cognitive Hierarchy, but significantly worse than noisy

introspection.

6. Conclusion

The “wisdom of the crowds” typically refers to the observation that a group may produce

better decisions than any of its members could have. The common explanation is that groups

aggregate diverse opinions and preferences, yielding more accurate information or more widely

acceptable policies and rules (e.g. Surowiecki, 2004). The wisdom of the crowds is a central

outcome of most social learning models in which imperfectly informed agents infer valuable

information from predecessors’ choices. In the canonical social learning model developed by

Bikhchandani et al. (1992), for instance, herding occurs frequently and almost immediately

after a few decisions have been observed.

In a clever and novel contribution, Callander and Hörner (2009) discuss settings where the

minority is predicted to be correct. Necessary conditions for this prediction to hold are that

agents are differentially informed and only observe the number of times each option is chosen

(and not the exact sequence of prior choices as in Bikhchandani et al., 1992). In this paper, we

test the Callander–Hörner model in a controlled laboratory setting. We employ a simplified ver-

sion of their model where each agent is either perfectly informed (with small probability) or not

informed at all (with complementary high probability). We report data from two treatments:

in treatment “sequence,” subjects could observe the entire sequence of predecessors’ choices,

while in treatment “no-sequence” they could see only how many times either option had been

chosen. For our setup, the predictions are that subjects follow their immediate predecessors in

treatment sequence and follow the minority in treatment no-sequence.

In a nutshell, the data may be characterized as follows: subjects tend to overwhelmingly

follow unanimous predecessors in both treatments (87%), they more frequently than not follow a

deviator in treatment sequence (72%), and they don’t follow the minority in treatment sequence

24Like type 2, type 3 follows the minority. While type 2 assumes that everybody else follows the majority,
type 3 assumes all other agents follow the minority. Therefore, type 2 and type 3 arrive at different expected
probabilities that option A is correct and as a consequence also exhibit different trembles. Like type 3, type 4
assumes that everybody follows the minority. Since agents in the simple noisy level-k model are unaware of the
fact that other agents tremble, type 4 is identical to type 3.
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(28%). The observed deviations from theoretical predictions are approximate best responses

to the empirical distribution of play. Given the choices of others, and given the signals used

in the experiment, not following unanimous predecessors is very costly ($1.53 on average), not

following a deviator in treatment sequence is less costly ($1.23 on average), and not following

the minority pays ($0.36 on average).

We analyze the deviations observed in our data using alternative models of bounded ratio-

nality. In the logit Quantal Response Equilibrium (QRE), for instance, agents are predicted

to tremble, which can overturn the logic for why the minority is correct. Intuitively, if the

probability of being informed is very low then a “deviant minority” is more likely the result

of a tremble that should rationally be ignored. When applying the logit-QRE to our data we

find that it is able to reproduce the main (aggregate) features. Zooming in on individual level

data, however, reveals a substantial amount of heterogeneity that cannot be explained by the

symmetric logit-QRE.

Heterogeneity in levels of strategic thinking is more naturally explained by the Cognitive

Hierarchy model (Camerer, Ho, and Chong, 2004) or the closely related level-k model (e.g.

Crawford and Iriberri, 2007). The level-k model, for example, assumes that agents of type

k best respond to their beliefs that others are of type k − 1. We apply both models to our

data and find they are also able to reproduce the main aggregate features, although not as

well as logit-QRE. Furthermore, their fit of the individual data is substantially worse. The

main reason for these shortcomings is the underlying best-response assumption, which conflicts

with several intuitive comparative statics observed in our data (e.g. subjects tend to follow

unanimous predecessors more frequently when the group of predecessors is large). In addition,

the best-response assumption skews the estimated type distribution towards lower types.

The noisy introspection model proposed by Goeree and Holt (2004) combines heterogeneity

in strategic thinking with noisy behavior by replacing level-k’s best response with a logit “better

response.” Importantly, agents in the noisy introspection model know that others tremble. For

example, when computing the probability that the minority choice is correct in treatment no-

sequence, agents take into account the possibility that the minority arose because of trembles.

As a result, the model can predict why subsequent choices favor the majority even for agents

with high levels of strategic thinking. We illustrate the importance of the “common-knowledge-

of-trembling” assumption by also estimating a noisy version of the level-k model in which agents

tremble but assume others don’t (as is typically done in the literature) and show that it fits

significantly worse.

The noisy introspection model fits our data significantly better than any of the other models.

It naturally captures heterogeneity in strategic sophistication as well as the endogenous effects

23



of noisy behavior. Without these endogenous effects, others’ trembles are easily mistaken for

informed behavior and sophisticated agents would have to conclude that the minority is wise. In

contrast, realizing that others can be error prone, sophisticated agents in the noisy introspection

model benefit from following the wisdom of the crowds.
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