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Abstract

The paper examines the possibility of comparing different information
structures in terms of informativeness, in the context of collective decision
making. We set up a fairly general model of collective decision making
through voting. Attention is restricted to groups in which members share a
common objective. An information structure’s informativeness is measured
by the expected aggregate value it offers the group. Our first result shows
that a comparison is possible in some cases, for any such like-minded group
and any possible voting rule. Still, we show that the instances where such
comparisons are possible are very limited. The set of information structures
that can be compared is extended if one poses restrictions upon the profile
of group members preferences or the voting rule. We apply some of our
results to a model in which information is endogenous.
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1 Introduction

Juries, FDA committees, hiring committees are all examples of groups of indi-
viduals that must make a decision: to convict or to acquit, to approve a drug or
not, to hire a particular candidate. Furthermore, all members of these groups are
like-minded because they share a common interest. If they had perfect informa-
tion about the problem at hand they would all agree on what decision the group
should take: acquit the innocent, reject a dangerous drug, hire an appropiate
candidate for the job. Disagreement may arise because of imperfections in the
information that the group members hold.

Groups can usually choose between a number of different sources of infor-
mation that can reduce uncertainty about the outcome of their decision. Juries
can hear different witnesses or admit specific evidence; an FDA committee can
choose from an array of clinical trials for a drug; a hiring committee can ask for
references from different sources, or have the candidate take specific tests. Given
limited resources, these like-minded groups often face the choice of a specific
source of information over another. Answering the question “what information
source is better for the group?” is not straightforward. In this paper we show
why not and under what conditions one can give a clear answer to that question.

It is well known that such an answer is not straightforward even for indi-
vidual decision makers. They can not be hurt by any additional information,
but the seminal work of Blackwell (1951) [5] shows that one cannot always rank
two alternative sources of information. They can be ranked when one source
A is equivalent to source B plus some noise. In that case source B is preferred
because it is, unambiguously, a more precise statistic of the state of the world
than A. But, in general, which one is better depends on the decision problem at
hand. Subsequent literature has tried to provide partial answers by looking at
specific families of decision problems. We further discuss these studies in the
literature review section.

When one looks at the problem from the point of view of a group, the prob-
lem of aggregating preferences conflicts with the comparison of informativeness
provided by different sources. The focus of this paper is the understanding and
resolution of these conflicting interests from the group’s point of view. Therefore,
we set up a collective choice problem, general enough to encompass different
economic situations. The group faces a binary choice problem. The collective
choice problem is resolved through voting. All information is public. In such
a model and with preferences being common knowledge there is no scope for
strategic manipulation of votes. What makes the problem of ranking prefer-
ences over information harder for a group? The following example illustrates
the relevant difficulties.
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Example 1. Consider a hiring committee comprised by two members: Anne and
Bob. They face the choice of whether or not to hire a candidate for a job. The
candidate may, or may not, be a good fit for the job. Any of the two possibilities
is equally likely. The table in figure 1 gives Anne and Bob’s valuations of any
possible outcome of their decision.

Likelihood of 
recomendation

Candidates condition

Fit for job Not fit

Recomendation

Hire

Do not 
hire

Likelihood of 
recomendation

Candidates condition

Fit for job Not fit

Recomendation

Hire

Do not 
hire

(Anne, Bob)
Candidates condition

Fit for job Not fit

Committee!s 
decision

Hire

Do not 
hire

Figure 1: Anne’s and Bob’s valuation of possible outcomes

Both members of the committee would agree on the best decision if they
knew whether the candidate is appropiate for the job or not. Note also that
while both agree on their valuation of making a wrong decision in either case,
they also agree that the opportunity cost of not hiring a good candidate is higher
than the opportunity cost of hiring an unfit candidate. That is, they both have
a bias towards hiring. The bias is higher in Anne’s case. Let us assume that
unanimity is required in order to hire the candidate.

Before taking a decision they have the choice to either have somebody inter-
view the candidate or have him take a test. Each of these procedures can give
some additional information. To keep the example simple, suppose that the
outcome of both procedures can be deduced to a binary noisy signal, in the form
of a recommendation: ’hire’ or ’don’t hire’. This recommendation is public: the
result of the interview or the test is common knowledge for both individuals.
The tables in the following figures show the likelihood of each recommendation
in each possible case, for each one of the two procedures.

Likelihood of 
recomendation

Candidates condition

Fit for job Not fit

Recomendation

Hire

Do not 
hire

Figure 2: Interview

Likelihood of 
recomendation

Candidates condition

Fit for job Not fit

Recomendation

Hire

Do not 
hire

Likelihood of 
recomendation

Candidates condition

Fit for job Not fit

Recomendation

Hire

Do not 
hire

Figure 3: Test
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The question we examine is which of the two procedures gives a higher
expected value to the committee. After receiving a recommendation, Anne and
Bob update their beliefs about the candidate’s fitness for the job. They use their
posterior to calculate their expected value from each of the two possible actions
and vote for the action that gives them a higher expected value. It turns out that
following an interview, both Anne and Bob would vote to hire the candidate.
That is, a negative recommendation from an interview is not strong enough to
overcome their bias towards hiring the candidate. On the other hand, if instead
of an interview they use a test, Bob would vote according to the recommendation
while Anne would still vote for hiring the candidate, regardless of the recom-
mendation. Given that unanimity is required for a hire, the committee always
hires the candidate after an interview, but only hires him if this is recommended
after a test. We can thus calculate the expected social welfare for the committee
after each of the two procedures:

W(interview) =
1
2

(1 + 1) +
1
2
· 0 = 1

W(test) =
1
2

[3
4

(1 + 1) +
1
4
· 0

]
+

1
2

[1
2
· 0 +

1
2

(1
4

+
2
3

)]
=

43
48

Social welfare is higher when using the interview.
It is interesting to notice that the test is actually a more precise procedure. The

posterior belief after a recommendation to hire is the same in both procedures.
But a recommendation not to hire from the test gives a higher posterior belief
that the candidate is not fit, compared to the same recommendation from an
interview. This means that less precise public information has a higher social
value.

In this example it is easy to see that this happens because the less precise
recommendation does not affect the committee’s decision either way: Anne’s
and Bob’s bias is too strong and the recommendation is too weak. The strong
recommendation from the interview may affect the vote of Bob but not the vote
of Anne, since she is more biased. Still, given the decision rule here, this means
that with the test, the final outcome may change, Anne does not want.

We do not examine how Anne and Bob decide whether to use an interview
or a test. We just make the comparison between the expected value generated
by each of these procedures.

In this example we perform the exercise of comparing two different sources of
public information for a particular group. It is always possible to perform such
a comparison for a given pair of information sources, a particular group and
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a particular decision rule. In the remainder of the paper we show when such
a comparison is possible for different combinations of individuals valuations
and decision rules. As in the example we focus on situations with a binary
choice and two possible states of nature. Unlike the example, we do not limit
the analysis to binary signals but allow for the public signal to have any general
form. Groups are allowed to have any possible number of members (even
infinite). We only restrict individual valuations to be such that under perfect
information all individuals would agree on the optimal choice.

1.1 Results

We show first that it is possible to establish a partial order on information sources
such that a particular source gives a higher value than another, for any possible
profile of individual valuations and any possible voting rule. Alas, the cases
where such an order is possible are limited. We show for instance that the only
binary signal that dominates other binary signals in such a way is the perfectly
revealing signal.

The partial order can be extended if one restricts the domain of possible
individual valuations. In particular, if we restrict attention to groups that a
priori receive the same expected value from both alternatives, it is possible to
establish an extended partial order on information sources, for any possible
voting rule. We give examples of parametric families of such sources that can
be ordered according to some parameter. These include power distribution
functions and exponential functions.

For any group, there may exist an optimal voting rule that maximizes social
welfare. Such an optimal rule pinpoints a particular individual within the group
as a decisive voter. If there exists an ordering on information sources according
to the expected value they give to the decisive voter, then this order holds for
the group if the optimal voting rule is applied.

Finally we use some of our results in an application of collective choice
design. We look at a case where the group may obtain information before
making a decision. This depends stochastically on how many of the group
members want the group to receive this public information. We show how this
demand for information depends on the voting rule used and we characterize
the rule that maximizes the expected social value for the group. We then use
the fact that some information structures can be ordered for any voting rule and
perform comparative statics. It turns out that the more informative the available
information structure, the more conservative is the optimal voting rule.

Throughout our analysis we assume that individual values from different
outcomes represent the individuals’ true valuations. This does not affect our
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analysis since we only perform comparisons of information structures without
considering any mechanism for choosing a particular one among the available
alternatives. For the cases covered in our first result, individuals would have
no incentive to misrepresent their valuations: when information sources can
be ordered in such a way, all group members agree with the group’s ordering.
When this is not possible, individuals could have incentives to misrepresent
their valuations if this could affect the choice of information source. Such
manipulation would not make any sense in order to affect the group’s final
choice: given binary choices and the type of preferences we consider, voting is
a strategy-proof method. By misrepresenting their valuations the agents cannot
obtain a better outcome.

1.2 Literature review

The seminal contribution to the literature on information structure comparisons
is Blackwell (1951) [5]. There, an information structure is more informative than
another if it is preferred by any decision maker for any possible decision prob-
lem.This strong condition induces a partial order on information structures. A
more comprehensive order is offered by Lehmann (1988) [17], who focuses on
specific decision problems that are monotone, and on information structures
that satisfy a monotone likelihood condition. Persico (2000) [21], Athey and
Levin (2001) [1] and Jewitt (2007) [16] move in the same direction and extend
Lehmann’s ordering for more general classes of monotone problems. In a re-
cent contribution, Cabrales, Gossner and Serrano (2012) [6] provide a complete
order on information structures, based on a measure of entropy in the decision
maker’s beliefs, in a class of investment problems. Ganuza and Penalva (2010)
[9] take a different approach than these papers. They provide an ordering that
is not based on any class of decision problems. Instead, they order different
information structures in terms of the variability of conditional expectations
they generate. They use this order to study the incentives of an auctioneer to
disclose information. Similarly to all these papers, the present one shares the
aim of comparing different information structures. It differs in doing so from
the point of view of a group of agents instead of a single decision maker.

A series of papers by Gersbach (1991 [11], 1992 [12], 1993 [13], 2000 [14]) study
the value of public information for groups that face a collective choice problem.
Through different examples it is shown that it is possible for public information
to be harmful for even a majority of voters. There are important differences
between our work and Gersbach’s contribution. Gersbach’s approach is valid for
a more general family of collective choice problems, with multiple alternatives
and no restriction on preferences, but it only considers comparisons between
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two extreme cases: perfect uncerainty or perfect information. Our institutional
restrictions in the choice problem allow us to compare situations with different
degrees of uncertainty

Messner and Polborn (2012) [19] and Strulovici (2010) [24] are two papers
that look at the attitude towards experimentation of groups of individuals, that
make decisions collectively. In both of them the setup is dynamic. In the first
one, the group faces the option to take a decision immediately, or to wait to
obtain more information. In the second one, the group decides through voting
whether it wants to continue experimenting with a particular policy. Continuous
experimentation allows voters to learn about the policy’s effects on their welfare.
Both papers focus on the choice of the collective decision making rule and on
how it determines the degree to which group members learn. Similarly, one
way to look at what we do in this paper is to think that the group is engaged in
a one stage experimentation game in which experimentation can take different
forms and we look at which type of experimentation offers the highest value to
the group.

The study of collective choice by groups of individuals that share a common
goal, in environments with incomplete information, goes back to Condorcet in
the 18th century and was studied later as well by Marshak and Radner (1972)
[18] in their theory of teams. More recently, Austen-Smith and Banks (1996) [2]
showed that strategic considerations may not allow the correct aggregation of
information in such groups. Feddersen and Pesendorfer (1997) [8] show that if
the size of the group goes to infinity, information is correctly aggregated. Persico
(2004) [22], Gerardi and Yariv (2008) [10] and Gershkov and Szentes (2009) [15]
study how the incentives of group members to acquire information depend
on the design of the decision mechanism. Bergemann and Välimaki (2005) [4]
survey the literature on information acquisition in the context of committees
and other mechanism design problems. In all of this line of the literature, any
information that the agents have or may acquire is a priori private. This gives
rise to particular strategic considerations on their part when making decisions
on whether or not to acquire information, on how they communicate with
others or on how to vote. All these are absent in our setting: attitudes towards
information depend strictly on individuals’ valuations and the design of the
decision process, not on the possible existence of any private information.

The possible value of public information to a set of individuals is studied in
Morris and Shin (2002) [20]. In their setting, individuals are involved in a game
where actions have strategic complementarities. They find that more public
information is socially beneficial when agents have no private information.
When this is not true, more public information may hurt society. In their paper
decision making is decentralized. Public information can help agents make
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better decisions but may also serve as a coordination device. In our setting,
decision making is centralized. Public information’s value lies solely in its
instrumental function in improving decision making by reducing uncertainty
about the state of the world.

2 The model.

In this section we setup a model of collective choice. Any results we obtain
concerning the possibility of ordering information sources refer to this model.

2.1 Like-minded groups.

Consider a set of agents I (possibly infinite) that have to choose, jointly, between
two possible collective actions, x ∈ X = {0, 1}. These may represent, for example,
two alternative policies, or two different candidates for a post. We may refer
to these simply as the “low” and “high action”. There is an unknown state of
nature that can have two possible values, θ ∈ {0, 1}. We may also refer to these as
the “low” and “high” state respectively. Agents share a common prior regarding
the state of nature. Let π represent the ex-ante probability agents assign to the
state of nature being high: π = Pr(θ = 1).

Individual valuations depend both on the collective action x and the state of
nature θ and are given by a function ui(x, θ, ti). Notice that we only assume that
all individuals’ utility functions depend on the same variables, namely x, θ and
an idiosyncratic parameter t ∈ T ⊆ R. This parameter represents the possible
bias of an individual towards either one of the actions the group may take. In
particular, let λi(t) = ui(1,1,t)−ui(0,1,t)

ui(0,0,t)−ui(1,0,t)
be an agent’s bias function. That is the ratio

of the opportunity cost from choosing the low action in the high state, over the
opportunity cost from choosing the high action in the low state. We make the
following assumption:

Assumption 1. The bias function λi(t) increasing in t and
for t > t′,

λi(t) > λ j(t′) , ∀i, j ∈ I

What this says is that individuals of a higher type are more biased in favor
of the high action. Furthermore, it states that it is possible to order individuals
in terms of their bias simply by knowing their type t and without any further
information about their valuations. We take advantage of this fact to lighten
notation and we from now on refer to the bias of individual i simply as λ(ti),
omitting the subscript for λ.
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It is helpful for our analysis to assume that agents are distributed over the
type space T following a distribution ξ(t) which may be either continuous or
discrete. All agents have equal mass. The total mass of agents is normalized
to 1:

∫
T
ξ(t)dt = 1. In the case of a discrete distribution the integral should be

substituted by a summation1.
We shall further assume that all agents together form what we name a like-

minded group (LMG)2.

Definition 1. A set of individuals I is a like-minded group if:

ui(θ, θ, ti) > ui(1 − θ, θ, ti),

∀ θ ∈ {0, 1}, ti ∈ T, i ∈ I

Assumption 2. I is a like-minded group.

As can be seen from the definition, all members of a LMG agree on what
the best action is in each state of nature. This does not mean that members of a
LMG always agree on what action the group should take. Given the uncertainty
about the state of nature there may be disagreement resulting from individual
biases in favor of the higher or lower action.

Tables 4 and 5 show two examples of 2-member groups. The numbers in the
cells represent the value for each group member given the action in a specific
state. Group 1 is not a LMG. Agents disagree on the optimal choice in the high
state. Group 2 is a LMG. Assuming the numbers represent the values of agents 1
and 2 respectively we can compute λ1(t1) = 1 > 1

4 = λ2(t2), which means t1 > t2:
agent 2 is biased towards the low action.

θ = 0 θ = 1
x = 0 10, 10 10,8
x = 1 8, 8 8,10

Figure 4: Group 1 is not a LMG

θ = 0 θ = 1
x = 0 1, 100 0, -10
x = 1 0, 20 1,10

Figure 5: Group 2 is a LMG

1Note that xi(t) is not a probability distribution and the fact that
∫

T ξ(t)dt = 1 is just a
normalization. In our analysis we assume that agents’ types are common knowledge

2The term ’committee’ is often used in the literature to describe groups with such preferences.
But besides preferences, the term also has connotations of relatively small groups and ‘committee
members‘ are often assumed to possess private information which they are expected to aggre-
gate. In our model groups may be of any size and we assume there is no private information.
We therefore prefer this alternative term.
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2.2 Information.

The group receives a public signal s ∈ S ⊆ R (common to all individuals)
about the state of nature before taking a decision. In particular, the signal s is
distributed according to a cumulative distribution function Fθ(s) on the set S
of possible signals. From now on we refer to either the information structure
(the pair {F0(s),F1(s)}) or the distribution (the unconditional distribution F(s;π))
interchangeably or simply by F. We use fθ(s) to denote the probability density
function for continuous signals and use the same notation for discrete signals,
implying fθ(s) = Pr(s|θ) for such signals. We assume that the distribution
satisfies the monotone likelihood ratio property (MLRP).

Assumption 3. f1(s)
f0(s) ≥

f1(s′)
f0(s′) ⇔ s > s′.

In other words, higher public signals imply that the high state of nature θ = 1
is more likely.

For the moment we make no further assumptions on S. While we use
integrals over subsets of S in the analysis that follows, and unless mentioned
otherwise, results also hold in the case of a discrete signal space and proofs can
be obtained by substituting integrals with summations.

2.3 Individual and Collective Choice.

2.3.1 Individual choice

Before setting up our model of collective choice it is useful to understand how in-
dividuals behave in such a setup. Or, in different words, by looking at “groups”
of a single individual.

Let φi : S→ X be a decision rule for an individual agent i. Given a decision
rule φi and an information structure F, an agent’s ex ante expected value is:

Ui(φi,F, ti) = π

∫
s∈S

ui(φi(s), 1, ti) f1(s)ds + (1 − π)
∫

s∈S
ui(φi(s), 0, ti) f0(s)ds

Now let φ̂i : S×T→ X be the optimal decision rule i.e. the one that maximizes
the individuals expected payoff given the public signal. It can be easily seen
that the MLRP on the information structure implies that φ̂i(s, ti) is a threshold
function.

Lemma 1. There either exists a threshold s̃i(ti) such that:

φ̂i(s, ti) =

1, s > s̃i(ti)
0, otherwise
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or φ̂i(s, ti) is constant.

Proof. All proofs of lemmas and propositions can be found in the appendix. �

In particular, the threshold s̃(t) is defined as follows:

s̃(t) = max
{

s :
f1(s)
f0(s)

π
1 − π

λ(t) ≤ 1
}

(1)

Furthermore, this threshold is decreasing in the agent’s type.

Lemma 2.
s̃(t) ≥ s̃(t′) f or t < t′.

At this point we make one last assumption on the set of possible signals that
comes with no loss of generality, but makes sure that the threshold is always
well defined:

Assumption 4. There exists s ∈ S, with s < s, ∀ s ∈ S \ {s}, and F(s) = 0. We
further assume s = −∞ if and only if (−∞, s′) ∈ S for some s′ ∈ R

For the analysis that follows it may be useful to remark that given the way
we define the threshold, s̃(ti) is the highest value of s such that i still prefers x = 0
over x = 1. This is particularly important in the case of discrete signals.

2.3.2 Collective choice

The group makes decisions using a voting rule in the following way: Action
x = 0 is taken if a proportion of at least q ∈ [0, 1] members of the group agree to
take this action. Members of the group agree to take an action if it is the optimal
decision they would take as individual decision makers3. Therefore it is given
by the function φ̂i(s, ti). Thus, the group’s decision function is:

x(q, s) =

 1,
∫

T
φ̂(s, t)ξ(t)dt < q

0, otherwise

Given the preferences, it is easily seen that after receiving the public signal
the group divides into two ordered subgroups.

3As was mentioned in the introduction, given preferences individual preferences, voting
under any q-rule is strategy proof. This means that voting for one’s preferred choice is a
dominant strategy.
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Lemma 3. Given a public signal ŝ, there exists t̃(ŝ) such that:

φ̂(ŝ, t) =

1, t > t̃(ŝ)
0, otherwise

Furthermore, t̃(s) is decreasing in s.

Some individuals of a low type with a threshold s̃ above the received signal
consider x = 0 optimal. The rest of the group, that is higher type individuals,
consider x = 1 as optimal. The group’s final decision will depend on whether
the mass of the first of these subgroups is larger than the quota q. If it is, then
according to the decision rule, the group takes action x = 0. If not, it takes
action x = 1. If the voting rule is simple majority we know that the group’s
decision always coincides with the vote of the median voter. The following
lemma generalizes this idea for all possible q-rules.

Lemma 4. The decisive type is the policy type td(q) that satisfies:∫
(−∞,td)

ξ(t)dt < q and
∫

(−∞,td]
ξ(t)dt ≥ q

The group’s decision function can be written as follows:

x(q, s) =

 1, td(q) > t̃(s)
0, otherwise

It is easy to see why this result holds: to know whether the group takes
action 0 or 1 we just have to know whether an individual with the decisive
type td prefers 0 or 1. Given lemma 3, we know that if an individual of type td

prefers x = 1, so will all individuals to his right (of a higher type) and following
the decision rule, x(q, s) = 1. If the individual prefers x = 0, then so will all
individuals to his left as well, and their mass is more or equal to q and therefore
x(q, s) = 0. Note that the decisive type is defined in a way that depends on the
distribution of types for a particular group and is always well defined.

This concludes our modeling of collective choice for LMG’s. In the following
section we examine whether it is possible to order different distributions with
respect to the value they provide to the group in this framework.
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3 Comparing Information Structures

The value of information lies in the degree to which it allows an agent to take
better decisions. Therefore, when comparing two information structures, say F
and G, one sais that F is more informative than G when the expected payoff for
the decision maker under F is higher than under G. Making such a comparison
for a specific decision problem is not complicated. But when the same com-
parison is made for a different decision problem the previous ranking in terms
of informativeness may not hold. A vast literature in economics and statistics
studies the properties of information structures that allow such comparisons
and gives orderings that are valid for more or less general families of decision
problems. In this section we attempt a similar exercise. Instead of looking at
individual decision problems, we focus on a collective choice problem. When is
an information structure better for the group than another one?

We attempt to answer this question in terms of the collective choice model
setup in the previous section. Still, for this question to have a content one must
define the value of information for a group. As in Gersbach (1991 [11]; 1992 [12];
1993 [13]; 2000 [14]), we choose to follow a utilitarian approach. We consider the
sum of individual group members’ valuations following the collective choice
made under a particular information structure to represent the value of this
information for the group.

Definition 2. A group’s expected value from an information structure F is:

V(φ̂d,F, π, q) =

∫
T
Ui(φ̂d,F, π, ti, q)ξ(ti)dt

Having defined the value of information for groups we can now define
informativeness for a group. Like in the literature concerning comparisons of
information structures for individual decision makers, we consider a particular
information structure to be more informative than another if it offers a higher
expected value to the decision maker. In our case the decision maker is the
group. Formally, we use the following definition:

Definition 3. We say that F is more informative for the group than G and denote it
as:

F >I G

if and only if:
V(φ̂d,F, π, q) ≥ V(φ̂d,G, π, q)
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3.1 Strong dominance

It follows from these definitions that how we rank two distributions depends not
only on the their characteristics but also on the heterogeneity and distribution of
group members’ preferences, and the decision rule used to make the collective
choice. Appropriate restrictions on these objects could deliver an answer to our
question but with a loss in generality. We first attempt to provide a more general
answer. This is in terms of conditions on distributions that, if satisfied, give a
ranking of distributions that does not depend on the group’s characteristics and
the decision rule used. The only essential assumption is that of the group being
like-minded.

The following definition formalizes the type of relation among distributions
we look for:

Definition 4. We say that F strongly dominates G if F , G and F >I G for any I and
anny q. We denote such a relationship as

F� G

We obtain a partial order of distributions in terms of strict dominance. Our
first main result gives the conditions that allow us to rank two distributions in
such a way.

Proposition 1. Let I be a like-minded group with ti ∈ T. Let F, G be two information
structures and ŝH(k) = argmax{h1(sH)

h0(sH) ≤ k} for (H, h) ∈ {(F, f ), (G, g)}.
Then,

F� G

if and only if, for all k > 0,
F0(ŝF(k)) ≥ G0(ŝG(k)) (2)

and

F1(ŝF(k)) ≤ G1(ŝG(k)) (3)

To understand the conditions in Proposition 1 notice that: F0(s̃F(td(q)) is the
probability that the group takes the right decision (x = 0) when the state is θ = 0,
while 1 − F1(s̃F(td(q)) is the probability of taking the right decision (x = 1) when
the state is θ = 1. Changing the voting rule changes the type of the decisive
voter and therefore also s̃(td(q)). If the conditions in the proposition hold, then
for any possible voting rule and any possible group or, instead, any possible
value of s̃(td(q)), the probability of making the right decision in any of the two
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states of nature under F is higher than under G. In other words, using F reduces
both type I and type II errors.

As we show next, these are very strong requirements for comparing distri-
butions. In particular, if F >I G for any group, then it must also be true for single
individuals. That is, any individual decision maker with preferences as the ones
in our model agrees on the ranking of F and G. Recall that in the example of the
introduction, although individuals would separately agree on one ranking, the
ranking for the group was the opposite.

Furthermore, given that by using F instead of G, both types of errors are re-
duced, all members in a group are better-off when the group makes the decision
under F. It would be therefore useless for any member of the group to miss-
report his true valuation if that could affect the choice of information structure.
Still, although everybody would agree on the best distribution for the collective
choice, there does not have to be agreement with the group’s final decision. For
a given public signal from F there may still be some individuals supporting the
high action and others supporting the low action.

We now give an example of two distributions F and G for which the condi-
tions in Proposition 1 are satisfied and hence F� G.

Example 2. Let F and G be two distributions over four different values: SH =
{s1

H, s
2
H, s

3
H, s

4
H}, for H ∈ {F,G}. The table in Figure 6 gives the complete description

of the two distributions.

F0 f0 F1 f0
f1
f0

G0 g0 G1 g1
g1

g0

s1
F 0.9 0.9 0 0 0 s1

G 0.3 0.3 0 0 0

s2
F 0.96 0.06 0.025 0.025 5

12 s2
G 0.8 0.5 0.15 0.15 3

10

s3
F 1 0.04 0.1 0.075 15

8 s3
G 1 0.2 0.55 0.4 2

s4
F 1 0 1 0.9 ∞ s4

G 1 0 1 0.45 ∞

Figure 6: These distributions are such that F� G

To check whether the conditions of Proposition 1 are satisfied we calculate
the pairs {ŝF(k), ŝG(k)} for different values of k and see whether the inequalities
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(2) and (3) hold.

{ŝF(k), ŝG(k)} =



{s1
F, s

1
G} , k ∈ (0, 3

10 )
{s1

F, s
2
G} , k ∈ [ 3

10 ,
5
12 )

{s2
F, s

2
G} , k ∈ [ 5

12 ,
15
8 )

{s3
F, s

2
G} , k ∈ [15

8 , 2)
{s3

F, s
3
G} , k ∈ [2,∞)

The graph of the two distributions in figure 7 allows to easily check that the
inequalities (2) and (3) hold for each one of these pairs.

 

 

s1 s2 s3 s4

1

0

0.5

F0

G0

G1
F1

Figure 7: The cdf’s for F and G.

It was mentioned already that the cases where a distribution strongly domi-
nates another one are not common. Our next result reflects exactly that.

Proposition 2. Let F,G be such that F� G.

1. If g1(s)
g0(s) > 0 ∀s , sG, then there exists sF ∈ SF : Pr(θ = 0|sF) = 1

2. If g0(s)
g1(s) > 0 ∀s , sG, then there exists sF ∈ SF : Pr(θ = 1|sF) = 1

To understand the statement in the proposition it is useful to note which
possible forms of G are not included. If SG = R and G is such that both g0(sG) and
g1(sG) asymptotically tend to zero in both directions (as s increases or decreases),
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then Proposition 2 does not apply. If this is not true in either direction and F� G,
then F must be such that the most extreme signal in the respective direction is
fully revealing of the state.

As a consequence of Proposition 2, it turns out that the extend to which one
can order distributions in terms of strict dominance is limited. Many situations
where, intuitively, a certain information structure seems more informative than
another are not included in this order.Furthermore, even some comparisons
that are possible under the Blackwell criterion are excluded here. This becomes
particularly striking when one considers comparisons among binary signals.
The following corollary is an application of Proposition 2 to this case.

Corollary 1. If F � G and SH = {s′H, s
′′

H}, for s′H < s′′H and H ∈ {F,G}, then F must
be fully revealing: Pr(θ = 0|s′F) = Pr(θ = 1|s′′F ) = 1.

What is stated here is the following: a fully revealing signal is the only
information structure that can strictly dominate a binary signal. This shows
that the strict dominance relation is much stronger than any intuitive notion of
informativeness one might have. Simply reducing the noise in a signal is not
enough.

Why is this so? The best way to understand this is to return to the example
from the introduction. The signal from the interview is such that the group’s
choice is not affected by the signal’s realization. The group always hires the
candidate after an interview. This means that the group never makes the error
of choosing not to hire when it should be hiring. Let’s call this a type I error. It
may make the error of hiring when it should not be doing it. This would be a
type II error. A more precise signal, like the one from the test leads to a collective
choice that depends on the realization of the signal. Therefore, after a test the
group may commit a type I error with a positive probability. We know from
Proposition 1 that under strict dominance both types of errors must be reduced,
which is not happening in this case. It turns out that it is always possible to
construct such a counterexample with binary signals, unless the dominating
signal is perfectly revealing. The same reasoning lies behind the more general
result in the proposition.

One conclusion that we can draw at this point is that being able to make
comparisons between distributions focusing only on their properties and with-
out any restrictions on the groups preferences or decision rule is closer to an
exception than to a rule. This gives rise to the question of whether one can
extend this partial order by setting restrictions on either the group’s preferences
or the voting rule used. The next section deals with the first type of restrictions.
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3.2 Restricted preferences

It is not hard to find pairs of distributions that satisfy inequalities (2) and (3)
in Proposition 1 for a particular profile of group members’ valuations. But
these may no longer hold once we consider another group, containing more
biased individuals. This happens, when the voting rule is such that one of these
biased individuals becomes decisive. It is not hard to understand then, that if
inequalities (2) and (3) hold for a particular group, they should also hold for
any group where “extreme” biases are reduced. This idea is formalized in the
following proposition.

Proposition 3. Let F, G be two information structures and ŝH(k) = argmax{ h1(sH)
h0(sH) ≤ k}

for (H, h) ∈ {(F, f ), (G, g)}. If:

F0(ŝF(k)) ≥ G0(ŝG(k)) and F1(ŝF(k)) ≤ G1(ŝG(k))

∀ k ∈
[
1 − π
π

1
λ(t̄)

,
1 − π
π

1
λ(t)

]
, 0 < t < t̄

then
F >I G ∀ I , q , and T ⊆ [ t , t̄ ]

Up to here, our results concern cases where one distribution is such that a
decision can be made by the group in a way that the probability of making the
correct decision is higher in any state of the world. We now turn to cases where
this may not be true but a particular distribution still offers a higher expected
value than another. To obtain such conditions we must make specific restrictions
on the group’s preferences. For these it is useful to define here a measure of the
group’s bias.

Definition 5. The group’s bias is:

Λ(u,T) =

∫
T
[ui(1, 1, ti) − ui(0, 1, ti)]ξ(ti)dt∫

T
[ui(0, 0, ti) − ui(1, 0, ti)]ξ(ti)dt

Notice that the group bias is not the average of the group’s members’ biases.
For instance, in the example of a LMG in Figure 5 the individual biases of the
two group members are λ(t1) = 1 and λ(t2) = 1

4 . The average bias is then 5
8 . On

the other hand, the group’s bias, as defined here, is Λ(u,T) = 1+20
1+80 = 21

81 . That is,
the magnitude of individuals’ valuations matter.

It turns out that by restricting the group’s bias to a particular value that
depends on the prior belief about the state, one can find conditions that allow
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for a comparison between distributions that holds for any voting rule. These
are given in the following result.

Proposition 4. Let I be a like-minded group such that Λ(u,T) = 1−π
π . Let F and G be two

information structures and let ŝH(k) = argmax{ h1(sH)
h0(sH) ≤ k} for (H, h) ∈ {(F, f ), (G, g)}.

Then
F >I G , ∀ q

if and only if,
F0(ŝF(k)) − F1(ŝF(k)) ≥ G0(ŝG(k)) − G1(ŝG(k))

∀ k > 0

The intuition behind the condition in proposition 4 is similar to the one
that gives the conditions of proposition 1. In that case, F had to such that the
probability of an error was reduced in each of the two possible states. Here, the
restrictions set on the group’s preferences allow us to relax this condition. What
needs to hold is that the sum over states of the probability of an error is reduced.
Said the over way around, the sume over states of the probability of taking the
right action is increased. This is more easily seen if we write the inequality in
the following way: F0(ŝF(k)) + [1 − F1(ŝF(k))] ≥ G0(ŝG(k)) + [1 − G1(ŝG(k))].

Example 3. Here we give an example of a class of distributions that can be
ordered in the way described in Proposition 4, assuming a uniform prior: π = 1

2
and Λ(t) = 1. Consider the class of distributions where F0(s) = 1 − F1(1 − s) and
s ∈ [0, 1]. We call such distributions symmetric. We also say that a distribution
F state-wise stochastically dominates another distribution G when F0(s) > G0(s)
and F1(s) < G1(s).

Now, let F(s;α) represent a family of symmetric distributions such that F(s;α)
state-wise stochastically dominates F(s;α′) for any α > α′ 4. The following graph
represents an example of two such distributions.

4As an instance of a family of distributions that satisfies all of the conditions stated in the
example, one can think of power distributions with F0(s;α) = 1 − (1 − s)α and F1(s;α) = sα,
s ∈ [0, 1] and α ≥ 1.
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1

0

0.5

F0(s;α)

F0(s;α')

F1(s;α')

F1(s;α)
10.5

Figure 8: Two distributions from the power distribution family, with α > α′.

First note that any symmetric distribution has the following property5:

f1(1
2 ;α)

f0(1
2 ;α)

= 1

Let ŝ(s) = {s′ : f1(s;α)
f0(s;α) =

f1(s′;α′)
f0(s′;α′) }.

With the help of the graph, it is easy to see that the following is true:

• First we have ŝ(1
2 ) = 1

2 . Then, one can observe from Figure 8 that

F0

(1
2

;α
)
− F1

(1
2

;α
)
> F0

(1
2

;α′
)
− F1

(1
2

;α′
)

• Then, for s ∈ [0, 1
2 ) it must be ŝ(s) < s. Hence, it must be:

F0(s;α) − F1(s;α) > F0 (ŝ(s);α′) − F1 (ŝ(s);α′)

• Finally, following the same logic, for s ∈ (1
2 , 1] it must be ŝ(s) > s . Hence,

again it must be:

F0(s;α) − F1(s;α) > F0 (ŝ(s);α′) − F1 (ŝ(s);α′)

5Because of symmetry: F0(s) = 1 − F1(1 − s). Taking the derivative on both sides and
substituting for s = 1

2 gives the property. I am grateful to Dimitris Xefteris for pointing that out.
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Summing up, the above means that the condition in Proposition 4 holds and
thus, we can say that for a like-minded group with Λ(u,T) = 1 and a uniform
prior, any family of symmetric distributions that can be ordered according to
state-wise stochastic dominance, can be ordered according to Proposition 4 in
the following way: F(s;α) > F(s;α′) for all α > α′.

The previous example demonstrates that when restricting our attention to
unbiased groups the scope for ordering distributions, in terms of informative-
ness for the group, increases. With the following example we demonstrate that,
nevertheless, there are limits to the possibility of ordering distributions. The
previous example may lead one to believe that state-wise stochastic dominance
of the distributions would be enough, but this is not true.

Example 4. Consider two distributions F and G. The signal may take one of
three possible values: S = {s1, s2, s3

}. The table in Figure 9 gives the complete
description of the two distributions.

F0 f0 F1 f0
f1
f0

G0 g0 G1 g1
g1

g0

s1 0.8 0.8 0.05 0.05 1
16 0.7 0.7 0.1 0.1 1

7

s2 0.95 0.15 0.4 0.35 7
3 0.85 0.15 0.5 0.4 8

3

s3 1 0.5 1 0.6 12 1 0.15 1 0.5 10
3

Figure 9: These distributions can not be ordered, even when Λ(u,T) = 1

These two distributions can not be compared in the terms posited in Propo-
sition 4. Suppose the group uses a voting rule such that λ(td(q)) ∈ ( 3

8 ,
3
7 ). Then

s̃F(td(q)) = s2 and s̃G(td(q)) = s1. But in that case, F0(s2) − F1(s2) = 0.55 while
G0(s1) − G1(s1) = 0.6, and the condition of Proposition 4 does not hold. The
following graph depicts the cumulative distribution functions for both F and G:
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s1 s2 s3

1

0

0.5

F0

G0

G1
F1

Figure 10: F and G can not be ordered for the group.

As can be seen from the graph, G0 stochastically dominates F0 and F1 stochas-
tically dominates G1. Yet, this is not enough to consider F more informative than
G for any voting rule.

Up to this point we have examined cases where an ordering of distributions
is possible for any possible voting rule. In the remainder of this section we
examine the possibility of ordering distributions when a particular voting rule
is applied, and its role in the group members’ demand for information.

3.3 The optimal voting rule

Our results show that it is possible to compare distributions without paying
attention to the specific voting rule. Still, different voting rules affect the final
outcome of the collective choice process. It makes sense then to ask whether
there exists an “optimal voting rule”, and if the answer is affirmative, what
institutional elements determine it.

Our optimality criterion, in accordance with previous sections, is aggregate
expected value maximization. As we show, it is possible for such an “optimal”
rule to exist. Furthermore, it depends only on the profile of the group members’
valuations.

Lemma 5. The group’s value is maximized for q∗ =
{
q : λ

(
td(q∗)

)
= Λ (u,T)

}
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According to Lemma 5 an optimal rule must be such that the bias of the
decisive voter coincides with the group’s bias. In other words, the group’s ex-
pected value is maximized if it makes decisions in the same way as an individual
decision maker with the same bias would make them.

Whether such a member exists within the group is not guaranteed by any
means. If group members form a continuous in the type space, then there
should exist an individual with the required bias. On the other hand, when
the set of agents is discrete, or generally non-convex, there may not exist such
a representative agent. The example of Anne and Bob in the introduction is

such an instance. The group’s bias is Λ(u,T) =
1
4 + 2

3
1+1 = 11

24 and does not coincide
with any of the two agents’ biases because: λ(tAnne) = 1

4 and λ(tBob) = 2
3 . As a

consequence, it seems easier to approach an optimal voting rule in large groups
than in small ones.

3.4 The optimal voting rule and comparisons of information
structures

Having defined the optimal voting rule in such a way we apply it in the task of
comparing distributions. This is done in the following result.

Proposition 5. Let F and G be two information structures. Let q = q∗. If F >d G , then
F >I G.

According to this result, if the optimal voting rule exists and the decisive voter
it defines is such that one distribution is more informative than the other for this
individual, then the same is true for the group. The importance of this result
lies in the fact that the use of the optimal rule not only maximizes the group’s
expected value. It also allows to use notions of informativeness established for
individual decision problems to the group’s problem. This means for instance
that any set of distributions that can be ranked according to Blackwell’s criterion
for individuals, can be ranked in the same way for a group that uses an optimal
voting rule. But Blackwell’s criterion is not the only useful one. Our decision
problem is such that when the group is comprised of a single individual, it falls
within the class of monotone decision problems. Lehman (1988) gives criteria
according to which distributions can be compared in the context of monotone
decision problems. Under these same criteria it is possible to rank distributions
that are not comparable according to Blackwell’s notion of informativeness.

Our next example illustrates a situation where an optimal rule does not
exist. Combining this with our previous results gives a situation where the
axiom ”more information is better” fails.
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Example 5. Consider a group made up of n individuals. Each individual’s
valuation is given by u(x, θ, ti) = −|x− θ| − |x− ti|, where t ∈ T = (0, 1). It follows
that each individual’s bias function is given by λ(ti) = ti

1−ti
. Let us assume that n

is even and individuals are distributed over T. That is, for any individual i with
ti = t′ there exists another individual j with t j = 1− t′. Given this symmetry, the
group is unbiased: Λ(u,T) = 1.

Suppose that it is possible for each individual in the group to obtain infor-
mation regarding the state θ. Furthermore, suppose that a mechanism exists
that fully aggregates such information and makes it available to the group. This
is of course a strong assumption, especially if the information is not verifiable6.
What we want to examine here is whether is is better for the group that all
individuals obtain information or some abstain from doing so. Following the
”condorcet jury” tradition, we assume that the available information comes in
the form of a binary signal that truthfully reveals the state with probability p:
Pr(si = θ) = p. Since private signals are fully aggregated, the public signal for
the group amounts to some s ∈ {0, 1, ...,m + 1}, where m ≤ n is the number of
individuals that obtained a private signal, and it follows a binomial distribution
with parameters m and either p or 1 − p, depending on the state.

The optimal voting rule here according to lemma 5 would in this case be one
that sets λ(td) = 1, that is td = 1

2 . Alas, since we assume that n is even, no optimal
rule exists in this case. Let us then assume that simple majority is needed for
x = 1. This means that if one orders individuals according to their types, such
that ti < t j for i < j, then td = t n

2
.

In what follows we shall put specific numerical values to the different pa-
rameters of the model and show that it is better for the group to obtain ”less”
information.

Let n = 6 and p = .8. We shall compare the case where all 6 individuals obtain
information (m = 6) to a case where all but one do so (m = 5). The following
tables give the likelihood ratios and difference in cdf’s, for each of these two
cases.

sF 0 1 2 3 4 5 6
f1(sF)
f0(sF) ≈ 0.0002 0.004 0.06 1 16 256 4096

F0(sF) − F1(sF) ≈ 0.26 0.65 0.88 0.88 0.65 0.26 0

Figure 11: Six available signals: F0(s) =
∑s

i=0
(6

i
)
.2i(1− .2)6−i and F1(s) =

∑s
i=0

(6
i
)
.8i(1− .8)6−i

6For more on this issue in the case of verifiable information see Schulte (2008) [23] and for the
cases of non-verifiable information Doraszelski et al (2003) [7] and Austen-Smith and Feddersen
(2005) [3]

24



sG 0 1 2 3 4 5
g1(sG)
g0(sG) ≈ 0.001 0.016 0.25 4 64 1024

G0(sG) − G1(sG) ≈ 0.33 0.73 0.88 0.73 0.33 0

Figure 12: Five available signals: G0(s) =
∑s

i=0
(5

i
)
.2i(1−.2)5−i and G1(s) =

∑s
i=0

(5
i
)
.8i(1−.8)5−i

It can easily be seen that proposition 4 does not hold: take for instance
k ∈ (16, 64). Then (ŝF(k), ŝG(k)) = (4, 3) and F0(4)− F1(4) < G0(3)−G1(3). A similar
contradiction occurs when k ∈ (256, 1024).

In terms of our example, this means that since td = t3, whenever t3 ∈ ( 1
65 ,

1
17 ]∪

( 1
1025 ,

1
257 ] the expected value of the group is higher under G than under F.

The reason this is so is the following. The additional private signal allows for
a richer set of public signals. For an individual decision maker this would suffice
to make F more valuable than G. But the additional signal also means a different
distribution of signals, and this is relevant in our setup of collective decision
making. In particular, given a decisive voter, the signal space gets partitioned
in two subsets: one for lower signals that lead to x = 0 and one for higher
signals that lead to x = 1. The public signal comes from one of these subsets.
Fixing a voting rule aslo fixes a distribution over these subsets in each state. The
additional signal leads to a different distribution over these two subsets in each
state. When the parameters are the ones mentioned above, this new distribution
leads to more frequent mistakes.

This example demostrates how in certain situations full information aggre-
gation may not be desirable from the point of view of the group. Notice that
besides assuming an even number of subjects in the group, which leads to the
inexistence of an optimal rule, assumptions about the group’s mebers prefer-
ences are quite regular. The counterintuitive result is derived from the statistical
properties of the available information structures and the way these interact
with the collective decision making process.

3.5 Group members’ demand for information

We have looked at the comparison of information structures from two points
of view: the group’s and the individual’s as a decision maker. Speaking in the
terms of our introductory example, the first refers to the value of information
to the group formed by Anne and Bob. The second refers to the value of
information to either Anne or Bob in a case where one of them is deciding on
his or her own whether or not to hire the candidate. The first is the main object
of this paper. The second serves as a yardstick that allows us to measure the
degree to which the notion of informativeness for the group departs from the
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notion of informativeness for individuals.
There is a third point of view though that may be useful when applying

the concepts of this paper in economic models of collective choice: the value of
information to individuals within the group. Again in terms of the example,
this refers to the value of information to Anne when she must make a decision
together with Bob. The next section considers an application where this value is
relevant. In general it will may be relevant in cases where group members must
take actions that influence the choice of the information structure that is chosen
to make the final decision. An example of this would be if group members are
to vote on what source of information should be used.

Our next result characterizes this demand for information within the group.
It should be no surprise that this demand depends on the voting rule that is
used.

Let Γq(F,G) = {t : EF[u(x(q, sF), θ, t)] ≥ EG[u(x(q, sG), θ, t)]}. That is, Γq(F,G)
is the set of the group’s members that prefer distribution F over G or, in other
words, all i ∈ I such that F >i G. The following lemma characterizes this set.

Lemma 6. Let {t, t̄} = {min{T},max{T}} and t̂(q) =
{
t : λ(t) = 1−π

π
F0(s̃F(td(q))−G0(s̃G(td(q))
F1(s̃F(td(q))−G1(s̃G(td(q))

}
.

Γq(F,G) =


[t, t̄] , F0(s̃F(td(q))) ≥ G0(s̃G(td(q))) and F1(s̃F(td(q))) ≤ G1(s̃G(td(q)))
[t, t̂(q)] , F0(s̃F(td(q))) ≥ G0(s̃G(td(q))) and F1(s̃F(td(q))) ≥ G1(s̃G(td(q)))
[t̂(q), t̄] , F0(s̃F(td(q))) ≤ G0(s̃G(td(q))) and F1(s̃F(td(q))) ≤ G1(s̃G(td(q)))
∅ , otherwise

First, if F and G are such that given the voting rule there is a higher probability
of taking the right decision in both states of the world under F, then all group
members prefer the decision to be taken under F. Second, if the distributions
are such that under F it is more likely to take the right decision in the low
state but less likely in the high state, then there exists a type t̂ that is indifferent
between the two distributions, and all individuals to his left prefer F over G.
This situation is reversed if under F it is more likely to take the right decision in
the high state but less likely to do so in the low state. Finally, if a right decision
in any state is more likely under G, then all agents prefer that distribution over
F.

So, according to this result, group members are split: the ones of a lower
type prefer one distribution while others of a higher type prefer the other one.
Notice though that this division depends directly on the voting rule. Changing
the voting rule not only moves the line of division. It can also lead to a switch
of preferences for some group members.

This concludes our analysis of the possibility of comparing different distri-
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bution structures. In the following section we apply some of our results to a
more structured collective decision problem. We do this to demonstrate the
applicability of the tools we introduce in the study of collective decision making
and the design of relevant institutions.

4 A model with endogenous information acquisi-
tion.

We now turn to an example of an application where we can make use of the
ranking resulting from a comparison of information structures. In the model
we consider, the group must make a decision. More information arrives if the
group is willing to wait for it. Group members that want the group to obtain
more information will try to prolong the waiting time. Others will press for
an immediate decision. The more individuals press for either option, the more
likely it is to happen. This is similar to the models of Gersbach (1992) [12]
and Messner and Polborn (2012) [19] but with one big difference: there is no
vote to decide whether or not to wait for more information. It is determined
stochastically, depending on the proportion of group members that support this
option.

As we know from our previous analysis, the demand for information in
the group depends on the voting rule used. First we characterize the optimal
voting rule for this setting. This differs from the optimal rule we described
in the previous section where information was considered entirely exogenous.
That is because now its effect on the demand for information, and hence on
the likelihood of obtaining more information, must be taken in to account. The
trade-off is the following. Positioning the voting rule away from q∗ increases the
demand for information within the group and therefore the likelihood to obtain
more information before takingthe final decision. On the other hand, the final
decision is not taken optimally any longer.

The optimal voting rule in this setting depends on the information structure
that may provide the public signal. For some information structures that can be
ranked according to Proposition 4, more informative distributions are associated
with optimal rules for endogenous information that are further away from the
optimal rule for exogenous information.

4.1 The model with endogenous information

To simplify the analysis, in this section we assume that I is a continuum dis-
tributed uniformly in the unit interval: ξ(t) = 1 , t ∈ [0, 1]. Given this assump-
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tion we can economize on notation. In particular, note that now td(q) = q. This
comes without any particular loss in generality, since we have not imposed any
restrictions on λ(t). We further assume that the group is unbiased, in terms
of Proposition 4 : Λ(u,T) = 1−π

π . This assumption is quite restrictive and not
necessary in order to perform our analysis. Still, it lets us focus on the role
of information when setting the optimal voting rule without having to bother
about the group’s bias or priors.

As mentioned before, the group faces two alternative scenarios: to have
some additional information or none. Let the public signal be σ ∈ {∅, s}, with
s ∼ F(s). Again, in order to keep analysis tractable we focus on distributions
with a continuous domain: s ∈ [s, s̄]. The following lemma characterizes the
group’s decision rule under no information:

Lemma 7. The group’s decision is given by

x(q,∅) =

1, q > q∗

0, otherwise

where
q∗ =

{
q : λ(q) =

1 − π
π

}
Let γ(q) =

∫
t∈Γq

ξ(t)dt be the fraction of group members that prefer that the
group receives public information before making a decision. According to
Lemma 6, Γq takes the following form:

Γq(F,∅) =

[o, t̂(q)] , q > q∗

(t̂(q), 1] , q ≤ q∗

where t̂(q) =
{
t : λ(t) π

1−π
F1(s̃(q))
F0(s̃(q)) = 1

}
. From this it follows that

γ(q) =

t̂(q) , q > q∗

1 − t̂(q) , q ≤ q∗

It is important to note that given the definition of t̂(q) and the behavior of
s̃(q) with respect to q, the further away from q∗ is q, the higher is the demand for
information by group member’s, captured by γ(q).

Now we assume that whether or not the group receives a public signal
depends on γ(q). In particular we assume that there exists a function µ : [0, 1]→
[0, 1] such that µ

(
γ(q)

)
= Pr(σ = s). We assume µ is increasing in it’s argument.
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One interpretation of this is that a contest ensues between group members: some
exert effort to keep the group from deciding before information arrives, while
others exert effort to accomplish the opposite. In this case, µ(γ) is the contest
success function.

In such scenario, the aggregate utility of the group is given by:

W(q) = µ
(
γ(q)

)
V(φd,F, π, q) +

[
1 − µ

(
γ(q)

)]
V(φd,∅, π, q)

This is actually a piecewise function and depends on whether the voting rule
q is higher or lower than q∗. We have: For q ≥ q∗:

W(q) =π

∫
T

u(1, 1, t)dt + (1 − π)
∫

T
u(1, 0, t)dt

+ µ(γ(q))(1 − π)F0(s̃(q))
∫

T
[u(0, 0, t) − u(1, 0, t)]dt

− µ(γ(q))πF1(s̃(q))
∫

T
[u(1, 1, t) − u(0, 1, t)]dt

While for q < q∗:

W(q) =π

∫
T

u(0, 1, t)dt + (1 − π)
∫

T
u(0, 0, t)dt

+ µ(γ(q))π[1 − F1(s̃(q))]
∫

T
[u(1, 1, t) − u(0, 1, t)]dt

− µ(γ(q))(1 − π)[1 − F0(s̃(q))]
∫

T
[u(0, 0, t) − u(1, 0, t)]dt

To find the optimal voting rule one must solve the first order condition.7

Again, given the piecewise nature of the function, we get two equations.

7We do not check the second order condition. Uniqueness depends on particular functional
forms but should in general not be an issue given the various monotonicity assumptions made
so far. In any case, the first order condition characterizes the optimal rule, unless we have a
corner solution which in this case would be unanimity. An interior solution is assumed in what
follows.
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For q > q∗ we have the following8:

∂µ(γ(q))
∂γ

∂γ(q)
∂q

F1(s̃(q)) + µ(γ(q)) f1(s̃(q))
∂s̃(q)
∂q

=
∂µ(γ(q))
∂γ

∂γ(q)
∂q

F0(s̃(q)) + µ(γ(q)) f0(s̃(q))
∂s̃(q)
∂q

Notice that for q ≥ q∗ we have γ(q) = t̂(q). That gives:

µ(γ(q)) f0(s̃(q))
∂s̃(q)
∂q

+
∂µ(γ(q))
∂γ

∂t̂(q)
∂q

F0(s̃(q)) =µ(γ(q)) f1(s̃(q))
∂s̃(q)
∂q

+
∂µ(γ(q))
∂γ

∂t̂(q)
∂q

F1(s̃(q))

By implicit differentiation we get:

∂t̂(q)
∂q

= −
λ(t̂(q))
∂λ(t̂(q))
∂t

∂s̃(q)
∂q

(
F1(s̃(q))
F0(s̃(q))

)′
s

F1(s̃(q))
F0(s̃(q))

Plugging this in to the last expression and simplifying we obtain the following:

f0(s̃(q)) − f1(s̃(q))
F0(s̃(q)) − F1(s̃(q))

F1(s̃(q))
F0(s̃(q))(
F1(s̃(q))
F0(s̃(q))

)′
s

=

∂µ(γ(q))
∂γ

µ(γ(q))
λ(t̂(q))
∂λ(t̂(q))
∂t̂

(4)

Let

∆(q) =F0(s̃(q)) − F1(s̃(q))
=F0(s̃(q)) − [1 − F1(s̃(q))] − 1
∝Pr(x = θ|σ = s) − Pr(x = θ|σ = ∅)

That is, ∆(q) represents the improvement in the likelihood of making the correct
decision after receiving a public signal, given q. Then 4 can be written as:

∆′s(q)
∆(q)

F1(s̃(q))
F0(s̃(q))(
F1(s̃(q))
F0(s̃(q))

)′
s

=

∂µ(γ(q))
∂γ

µ(γ(q))
λ(t̂(q))
∂λ(t̂(q))
∂t̂

(5)

Expression (5) characterizes the optimal voting rule in this setup. It captures the

8For q < q∗ we obtain a similar expression as the one we obtain here. The only difference
is a negative sign in the RHS. Which of the two solutions represents the optimal voting rule
depends on the specific functional forms for λ(t) and µ. What interests us more here are the
comparative statics that are of a similar nature in either case. We therefore focus the analysis on
this expression keeping in mind that the actual optimal voting rule may be characterized by the
symmetric expression.
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trade-off we have described between optimal decision making and increased
demand for information. The first is captured by the first term in the LHS which
represents the proportional change of ∆(q). The other terms capture the change
in demand for information. In particular, the RHS together with the second
term of the LHS can be thought as the elasticity of the likelihood of receiving
the public signal with respect to the the proportion of group members that want
the public signal. This proportion depends on the individuals’ biases, captured
by the last term in the RHS and the form of the available information structure,
captured by the second term in the LHS.

First note that for q = q∗ as defined in lemma 5, ∆′s(q)
∆(q) must be zero,9 since

Λ(u,T) = 1−π
π . Given that the terms in the RHS are strictly positive by definition,

q∗ is not a solution to the equation in (5). Remember that s̃ is decreasing in t and
therefore also in q. This implies, the solution in this case must be some q∗∗ > q∗.
This assures that f0(s) > f1(s) which makes the LHS positive.

The optimal rule in this model with endogenous information is more con-
servative than the optimal rule when information is exogenous. To understand
this, notice that q∗ is such that the decisive voter must have a bias λ(td) = 1−π

π
which is decreasing in π. This means that the decisive voter under q∗ is biased
towards the action that matches the state that is a priori less likely. What we
show here is that since q∗∗ > q∗ it must be that

λ
(
td(q∗∗)

)
> λ

(
td(q∗)

)
Hence, the bias of the decisive voter according to q∗∗ is closer to the state favored
by the prior, compared to the decisive voter under q∗. The case of a uniform
prior (π = 1

2 ) offers a good illustration of this. In that case, q∗ = 1
2 , which is simple

majority. Then, the optimal rule in this model with endogenous information is
some kind of super-majority.

4.2 Comparative statics with respect to information

How does the optimal voting rule here change for more informative public
signals? It is at this point where Proposition 4 is useful. It allows us to determine
whether a particular information structure is more informative than another
for any voting rule. Thus, if distributions that satisfy the conditions in this
proposition are considered, informativeness remains exogenous to the model
and comparative statics with respect to information make sense.

We do this here using the family of power distributions defined in example
3. As we show, this family satisfies the conditions of Proposition 4. In particular,

9Rember the definition of s̃ given in lemma 1

31



F(s;α) becomes more informative for higher values of α. The question is then,
how does q∗∗ change as α increases?

Remember that the family of distributions we consider is such that F0(s;α) =
1 − (1 − s)α and F1(s;α) = sα. Plugging this in to the LHS of 5 gives:

sα

1 − (1 − s)α

sα
1−(1−s)α

sα−1α
1−(1−s)α −

sα(1−α)α−1α

(1−(1−s)α)2

This can be shown to be decreasing in α. It follows that q∗∗ must be increasing
in α. In other words, The better the possibly available information, the more
conservative should the voting rule be.

One obtains similar results performing this exercise with other families of
distributions that can be ordered according to Proposition 4. Whether there is a
more general relation between informativeness and the comparative statics on
the voting rule in this model remains as a research question for the future.

5 Conclusions

We ask the question of whether an ordering of information structures is possible
for a group of like-minded individuals. We answer by saying that only a partial,
and very limited, order is possible in general. It can be extended if more
restrictions are put on the group’s profile of preferences.

What is important to understand is that the notion of “better information” as
we understand it for individuals, even in its most restrictive form, as formalized
by Blackwell, can not be applied to groups. Even if group members are like-
minded, in that they agree on what should be done in a given state of the
world. The reason is that uncertainty introduces disagreement. More precise
information does not guarantee more agreement. This is why it may be better
for the group to be “less informed”.

There is an aspect of information we ignore throughout the analysis: it usu-
ally comes at some cost. In particular, more precise information is usually more
costly. The omission of the costs from acquiring information in our analysis is
intentional. It aims at emphasizing how the collective decision making process
generates frictions that can reduce the value of information even when there are
no other costs to pay. Having established that, the question of how should a
group proceed to acquire public information when it is costly, becomes partic-
ularly interesting. Public information has some of the characteristics of public
goods. But as we show here it may also be a public “bad” for a subset of group
members. What mechanism should be used to elicit individuals’ valuations
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and choose among different sources of information and finance it’s acquisition?
What is the role of the voting rule in such a mechanism? These questions are
left as future research.

A Proofs

Proof of Lemma 1.
Agent i chooses x = 1 if:

f1(s)π
f (s;π)

u(1, 1, ti) +
f0(s)(1 − π)

f (s;π)
u(1, 0, ti) >

f1(s)π
f (s;π)

u(0, 1, ti) +
f0(s)(1 − π)

f (s;π)
u(0, 0, ti)

f1(s)
f0(s)

π
1 − π

λ(ti) > 1 (6)

Given the MLRP there must either be a threshold value s̃i(ti) such that the
inequality holds for s > s̃i(ti) proving the first part of the lemma, either it always
or never holds, and φ̂i(s, ti) is constant. �

Proof of Lemma 2.
This follows directly from inequality 6 in the proof of lemma 1 and the mono-
tonicity assumption on λ(t) �

Proof of Lemma 3.
It follows from the monotonicity of φ̂(s, t) with respect to t. �

Proof of Proposition 1.
From the definition of F >I G we get the following inequality:

F0 (s̃F(td)) − G0 (s̃G(td)) ≥
π

1 − π
Λ(ui, ξ(t)) [F1 (s̃F(td)) − G1 (s̃G(td))] (7)

where Λ(ui, ξ(t)) =

∫
T[ui(1,1,ti)−ui(0,1,ti)]ξ(ti)dt∫
T[ui(0,0,ti)−ui(1,0,ti)]ξ(ti)dt

represents the group’s bias.

Also, from the definition of s̃(t) it follows that:

h1(s̃(t))
h0(s̃(t))

≤
1 − π
π

1
λ(t)

, ∀h ∈ { f , g}

The RHS of this inequality is always positive and decreasing in t. Then, for
t̂(k) = {t : 1−π

π
1
λ(t) = k} it must be that s̃(t̂(k)) = ŝ(k). Thus, if the inequalities stated

in the second part of the proposition hold for any k, they must also hold for any
s̃(t̂(k)). In such case, then the LHS in (7) is positive and the RHS is negative. This
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proves the sufficiency of these conditions for the informativeness relationship
stated in the proposition.

We prove the “only if” part of the proposition by showing that if the in-
equalities do not hold, one can always two instances of groups and voting rules
such that the informativeness ranking between F and G is different in each case.
Consider a group I = {1, ...,n} and q = 0. Suppose t1 < t2 < ... < tn. Then we
have td(q = 0) = t1. Individuals’ preferences are as follows:

ui(1, 1, ti) = ti

ui(0, 0, ti) = 1
ui(1, 0, ti) = ui(0, 1, ti) = 0

for all i ∈ I. If F >I G, then it must be that:

F0 (s̃F(t1)) − G0 (s̃G(t1)) ≥
π

1 − π

∑
I ti

n
[F1 (s̃F(ti)) − G1 (s̃G(ti))] (8)

Suppose F0 (s̃F(t1)) ≥ G0 (s̃G(t1)) and F1 (s̃F(ti)) ≥ G1 (s̃G(ti)). It is clear that in-
equality(8) may hold for

∑
i,1 ti low enough, but not for

∑
i,1 ti above a certain

threshold. The same argument can be made for F0 (s̃F(t1)) ≤ G0 (s̃G(t1)) and
F1 (s̃F(ti)) ≤ G1 (s̃G(ti)). This proves the necessity of the inequality conditions
stated in the proposition in order for >I to be valid for any I and any q. �

Proof of Proposition 2.
We show the result for point 1. Point 2 follows from a symmetric argument. We
show that given F� G and g1(s)

g0(s) > 0 , ∀s , sG, it must be f1(s)
f0(s) = 0 for some s , sF.

Suppose not. Then inf{ f1(s)
f0(s) } > 0. There are two cases to consider:

Case 1: inf{ f1(s)
f0(s) } > inf{ g1(s)

g0(s) }.

Then there exists I such that for some q′, π
1−π

1
λ(td(q′)) ∈

(
inf{ g1(s)

g0(s) }, inf{ f1(s)
f0(s) }

)
. From

the definition of s̃(t), this means that:
s̃F(td(q′)) = sF and arg inf{ g1(s)

g0(s) } ≤ s̃G(td(q′)) ≥ σ. This in turn means that
F0(s̃F(td(q′))) = F1(s̃F(td(q′))) = 0 and G0(s̃G(td(q′))) > 0. This inequality holds
because given our assumptions, g0(s̃G(td(q′) must be positive. If sG is discrete
in [ arg inf{ g1(s)

g0(s) }, σ] the inequality follows directly. If it is continuous in some
interval then it must be true as well for the supremum of that interval. Notice
then that F0(s̃F(td(q′))) = 0 < G0(s̃G(td(q′))) > 0 which violates F� G.
Case 2: inf{ f1(s)

f0(s) } < inf{ g1(s)
g0(s) }.

Then there exists I such that for some q′, π
1−π

1
λ(td(q′)) ∈

(
inf{ f1(s)

f0(s) }, inf{ g1(s)
g0(s) }

)
. From

the definition of s̃(t), this means that:
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s̃G(td(q′)) = sG and arg inf{ f1(s)
f0(s) } ≤ s̃F(td(q′)) ≥ σ′. This in turn means that

G0(s̃G(td(q′))) = G1(s̃G(td(q′))) = 0 and F1(s̃F(td(q′))) > 0, for the same reason as
with G0 in case 1. Again this violates F � G. Thus for F � G to be true when
g1(s)
g0(s) > 0 , ∀s , sG it must be f1(s)

f0(s) = 0 for some s , sF. This means that for that s
Pr(θ = 0|sF) = 1. �

Proof of Proposition 3.
Given the conditions in the proposition, inequality 7 must hold for any q, as
long as td ∈ [t, t̄]. The restriction on T makes sure of that and thus the result
holds. �

Proof of Proposition 4.
The result follows directly by rearranging inequality (7). �

Proof of Lemma 5.
Solving the FOC for the aggregate utility we obtain:
f1(s̃(td(q∗)))
f0(s̃(td(q∗))) = 1−π

π
1

Λ(ui,ξ(t)) .

Combining this with inequality 6 in the proof of lemma 1 gives the definition of
q∗. Monotonicity with respect to Λ follows from monotonicity of td(q) and the
MLRP. �

Proof of Proposition 5.
From Lemma 5 we have λ

(
td(q∗)

)
= Λ (ui, ξ(t)). Plugging this into inequality (7)

gives:
F0

(
s̃F(td(q∗))

)
− G0

(
s̃G(td(q∗))

)
≥

π
1−πλ

(
td(q∗)

) [
F1

(
s̃F(td(q∗))

)
− G1

(
s̃G(td(q∗))

)]
.

Since we assume F >i G , ∀ i ∈ I, this inequality must hold, proving the point. �

Proof of Lemma 6.
Note that:

EF[u(x(q, sF), θ, t)] ≥ EG[u(x(q, sG), θ, t)]

F0(s̃F(td(q)) − G0(s̃G(td(q)) ≥
π

1 − π
λ(t)[F1(s̃F(td(q)) − G1(s̃G(td(q))]

For t = t̂(q) this expression holds with equality, i.e. the individual of type t̂(q)
is the one that is indifferent between the two distributions. The definition of
Γq(F,G) follows from the monotonicity of λ(t) with respect to t. �
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Proof of Lemma 7.
Note that td(q) = q. We know that x(q,∅) = 1 if

E[ud(1, θ, q)] > E[ud(0, θ, q)]
πud(1, 1, q) + (1 − π)ud(1, 0, q) > πud(0, 1, q) + (1 − π)ud(0, 0, q)

λ(q) >
1 − π
π

Remember that q∗ is such that λ(q∗) = Λ(u,T), and by assumption Λ(u,T) = 1−π
π .

This prooves the lemma �
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