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Abstract

Previous experiments based on the 11-20 game have produced evidence for the level-k
model with observed levels of strategic thinking consistently ranging from 0 to 3. Our base-
line treatment uses the 11-20 game and replicates previous results. We apply four models
of strategic thinking to the baseline-treatment data and use these to predict behavior and
beliefs in five other treatments that employ games with a very similar structure. The best
predictive performance is achieved by models that incorporate “common knowledge of
noise”. A model of noisy introspection, which does so, predicts behavior remarkably well.
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1. Introduction

Behavior in one-shot games often differs substantially from Nash equilibrium predictions (e.g.

Goeree and Holt, 2001), which has led to the development of alternative models. These alter-

natives relax either the assumption of correct beliefs or the assumption of perfectly maximizing

behavior. The leading candidate in the latter category is McKelvey and Palfrey’s (1994) quan-

tal response equilibrium (QRE), which subsumes that decision making is noisy but that beliefs

are correct on average. An important strength of QRE is that it is “context-free,” i.e. it can

be applied uniformly to data sets from different experiments without having to be adapted to

the specifics of the experimental context. In repeated-game experiments where behavior has

a chance to converge, QRE typically does a good job at predicting final-period averages as

well as comparative statics across treatments. For one-shot games, however, the assumption

that beliefs are correct on average is generally not realistic. Moreover, the basic QRE model

corresponds to a symmetric Bayes-Nash equilibrium that predicts homogenous behavior.

Observed behavior, in contrast, typically appears quite heterogenous. This has stirred

interest in theories that allow for different levels of strategic sophistication, or different levels

of thinking. In this category, the leading candidate is the level-k model (Stahl and Wilson,

1994, 1995; Nagel, 1995), which employs a potentially infinite hierarchy of strategic thinking:

level-0 chooses naively or randomly, level-1 best responds to level-0, level-2 best responds to

level-1, etc. Given that the behavior of higher levels is fixed by that of level-0, the specification

of level-0 behavior is crucially important. Initially, level-0 behavior was simply modeled to

be uniform, resulting in a context free model that can be generally applied. Recently, more

elaborate specifications of level-0 behavior that take into account details of the environment

have been proposed in order to improve fit. Without generally applicable rules for how to map

certain game (or other) variables into level-0 behavior, however, this approach has the flavor of

“doing theory with a dummy variable.”

Unless, of course, the environment dictates an obvious and unique choice for the non-

strategic level-0. Arad and Rubinstein (2012) propose such an environment: the “11-20” game

where two players can ask for any integer amount between (and including) 11 and 20 and

receive what they ask for. This is the non-strategic part of the game and since even a level-0

understands that “more is better,” the obvious choice for level-0 is to ask for 20. The strategic

part of the game specifies that an additional bonus of 20 is rewarded to a player whose ask

amount is 1 less than that of the other player. A level-1 player would therefore ask for 19,

level-2 for 18, etc. In three variations of the “11-20” game, Arad and Rubinstein (2012) find
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that the inferred levels of thinking consistently range from 0 to 3. Arad and Rubinstein (2012)

thus accomplish two important goals: (i) they design a game for which level-k type thinking

is natural and for which the level-0 choice is obvious, (ii) they report data that support the

level-k model and corroborate results from previous experiments.

That is not to say that their data are inconsistent with alternative models such as QRE.

Given observed choice frequencies in Arad and Rubinstein’s (2012) experiment, requesting

amounts of 17, 18, or 19 (attributed to levels 3, 2, and 1 respectively) all yield expected payoffs

above 20 and QRE thus also predicts these numbers are likely to be chosen.1 To better separate

the different models we consider variations of the “11-20” game that leave intact the obvious

level-0 choice and the best-response structure of the game but that change the payoffs associated

with different levels of thinking. We do this by assigning the numbers 11 to 20 to ten boxes

arranged on a line, always reserving the rightmost box for 20. Subjects receive the number

in the box they choose plus a reward if their chosen box is immediately to the left of that

chosen by the other subject. The standard “11-20” game corresponds to arranging numbers

in increasing order (from left to right) but in other variations the sequence is not monotone.

For example, in an “extreme” variation, numbers decline from 19 to 11 ending, as usual, with

20. This reshuffling of numbers does not affect the logic underlying the level-k model: level-0

chooses the rightmost box with 20, level-1 the box next to it, level-2 the box next to that, etc.

In other words, the level-k model predicts behavior in these variations to be identical to that

in the standard game.

Observed behavior in these variations differs markedly from level-k predictions, however.

Subjects submit a high request, say 19, irrespective of whether this corresponds to a level-

1 choice in the standard game or to a level-9 choice in the extreme variation. While not

predicted by the level-k model, a choice of 19 is actually quite intuitive in that it costs only

1 and potentially rewards 20. When others’ behavior is noisy and dispersed, all requests have

some chance of yielding the bonus and those for which the loss in requested amount is low

will naturally be explored. Importantly, this argument requires “common knowledge of noise,”

i.e. not only is behavior noisy but subjects expect it to be noisy and act accordingly. This

common knowledge of noise results in drastically different predictions than simply adding noise

to the level-k model, which is the standard practice when fitting this model to the data. The

latter would disperse observed levels in the baseline game but cannot explain why a substantial

fraction of the subjects acts as if they are of level 9 in the extreme variation of the game.

The noisy introspection model introduced by Goeree and Holt (2004) naturally captures the

1In Arad and Rubinstein’s (2012) experiment the choice frequencies for amounts of 20, 19, 18, and 17 are
6%, 12%, 30% and 32% resulting in expected payoffs of 20, 20.2, 20.4, and 23 respectively.

2



notion of common knowledge of noise. Players are not only noisy themselves, but expect others

to be noisy. In the “11-20” game this means that choices such as 18 and 19 in the extreme game

become sensible. We adapt the more general model here to allow for heterogeneity in levels of

thinking in a way similar to the level-k model, but replacing strict best responses with noisy

best responses. In other words, level-1 makes a noisy best response to level-0, level-2 makes a

noisy best response to the noisy play of level-1, etc.

We put the noisy introspection model to the test as follows. We first replicate Arad and

Rubinstein’s (2012) baseline treatment and use this to identify the distribution of noisy level-k

thinkers, for k = 0, 1, 2, . . ., as well as a common noise parameter. These are then used to

out-of-sample predict behavior and beliefs in five variations of the “11-20” game. As detailed

below, the noisy introspection model predicts choices and beliefs strikingly well across all game

variations.

This paper is organized as follows. The next section explains the noisy introspection model.

Section 3 details the experimental design and Section 4 discusses the experimental results. Sec-

tion 5 concludes and the Appendices contain additional estimation results and the experimental

instructions.

2. Noisy Introspection

In the noisy introspection model, players apply a process of iterated reasoning about what

the other will choose, what the other thinks the player will choose, what the other thinks the

player thinks the other will choose, etc. It is natural to assume that this thought process

becomes increasingly complex with every additional iteration which can be neatly captured by

considering a sequence of noisy responses with non-decreasing noise parameters. Imagine a

game of chess where a player tries to think through a series of moves. She needs to envision

the board’s configuration after each such move, after each response by the opponent to her

move, etc.. It is intuitive to think that it becomes increasingly hard to think about board

configurations and possible moves the further ahead these lie in the game.

To formalize, consider a two-player, symmetric game with a finite set of actions, A.2 The

expected payoff πe(a, q) of choosing a ∈ A depends on a player’s beliefs, q, which is a probability

distribution over A. Adopting the familiar logit formulation we can define the “better response”

2Symmetry allows us to avoid player specific subscripts.
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mapping φµ : [0, 1]|A| → [0, 1]|A| with components

φaµ(q) =
exp(πe(a, q)/µ)∑

a′∈A exp(πe(a′, q)/µ)
∀a ∈ A (1)

The noise parameter, µ, determines how sensitive the response function is with respect to

expected payoffs: µ = 0 results in a best response and µ =∞ in uniform randomization.

The unique noisy introspection prediction, φ, can be defined as the limit sequence

φ = lim
n→∞

φµ0 ◦ φµ1 ◦ . . . ◦ φµn(q) (2)

where µ0 ≤ µ1 ≤ . . . ≤ µ∞ =∞. This guarantees that φ is independent of the belief q used as

a starting point for the iterated thought process. In other words, assuming that the sequence

of error rates diverges to infinity implies that players “start out” their reasoning process from

a uniform prior.

Besides the monotonicity and limit conditions, the noisy introspection model imposes no

further restrictions on the sequence of noise parameters thereby allowing for various special

cases to be included. Goeree and Holt (2004), for instance, consider a homogeneous noisy

introspection model where all players are characterized by the same geometrically increasing

sequence of noise parameters. Here we use a different specification to allow for heterogeneity. A

parsimonious model that exhibits heterogeneity follows by considering different levels of noisy

thinking, NI-k for k = 0, 1, 2, . . ., where the sequence of noise parameters for NI-k is given by

µk̂ =

{
µ k̂ < k

∞ k̂ ≥ k
(3)

The corresponding noisy introspection prediction for each level is then

φk =

k − 1 times︷ ︸︸ ︷
φµ ◦ φµ ◦ . . . ◦ φµ ◦φ∞

= φµ(φk−1) (4)

So level-0 randomizes uniformly across all actions, level-1 makes a noisy best response to uniform

beliefs, level-2 makes a noisy best response to a noisy best response to uniform beliefs, etc.

Introducing heterogeneity in to the model facilitates comparison to the level-k model and will

allow us to pin-down differences in performance to the most salient difference of the model,

namely the “common knowledge of noise” aspect. Figure 1 illustrates the noise sequences of

the various levels.
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Figure 1: Various levels of noisy thinking in the NI-k model. Each line corresponds to a different
sequence of error parameters µ0 ≤ µ1 ≤ . . . ≤ µ∞ =∞. For example, the line labeled NI-0 corresponds
to completely random decision making, which occurs if µ0 = ∞. The next level NI-1 reflects a noisy
best response to uniform beliefs, which occurs if µ0 = µ and µ1 = ∞. Similarly, NI-k for higher k
simply corresponds to the case µ0 = µ1 = . . . = µk−1 = µ and µk =∞.

An appealing feature of the NI model presented in (3) is that it includes other popular

models as special cases. For instance, when µ = 0 the noisy introspection model reduces to the

level-k model that employs strict best responses.3 As another example, suppose all players have

infinite levels of noisy thinking so that the sequence of noise parameters is constant at µ. Then

(2) converges to a quantal response equilibrium, if it converges at all, as the limit sequence

satisfies φµ(φ) = φ. This limit is illustrated by the horizontal line in Figure 1. Finally, in

those cases where (2) converges with constant noise parameters even when µ = 0, the outcome

converges to a Nash equilibrium. So all the familiar models, level-k, QRE, and Nash, are

potentially nested.4

Another interesting connection is between noisy introspection and the concept of rationaliz-

ability (Bernheim, 1984; Pearce,1984). The latter is based on the idea of iteratively eliminating

3One potential difference is that level-0 corresponds to random behavior in the noisy introspection model
but not necessarily in the level-k model. Recent versions have allowed the definition of level-0 to depend on
the specifics of the game. For example, for the “11-20” game, Arad and Rubinstein (2012) argue that level-0
play is more adequately described by a choice of 20. When we apply level-k to the data we consider both the
possibility that level-0 chooses 20 and that level-0 chooses randomly.

4Notice that the term ‘nested’ here is not meant in the strict econometric sense. In fact, the specifications
of the various models we estimate in the paper are non-nested, so that no a priori ranking in terms of fitness is
possible.
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strategies that are never a best response for any set of beliefs. Starting from this and replac-

ing rational best responses with logit best responses one gets back to noisy introspection. An

important difference between the two is that while the set of ratinalizable strategies generally

consists of more than one point, the “noisy rationalizable strategy” is always unique. This is

true even in games with multiple Nash equilibria.

3. Experimental Design

The experiment used variations of Arad and Rubinstein’s (2012) money request game, which

were described as follows:5

You and another participant in the experiment are randomly matched to play
the following game. On your screen you see 10 boxes in line, containing dif-
ferent amounts. Each player requests an amount of points by selecting one
of the 10 boxes. Each participant will receive the amount in the box he/she
selected. A participant will receive an additional amount of R points if the
selected amount is exactly ‘one to the left’ of the amount that the other partic-
ipant chooses. Which box do you select?

Subjects were in one of two treatments. In the “11–20” treatment the amounts in the boxes

ranged from 11 to 20 experimental points and the bonus was R = 20 points. In the “1–

10” treatment the amounts ranged from 1 to 10 points and the bonus was R = 8 points.

The exchange rate from experimental points to Swiss Francs was adjusted accordingly so that

a choice of the highest number in the rightmost box would equal 5 Swiss Francs in either

treatment.

Within a treatment there were three stages. Subjects were given separate instructions at the

start of each stage and received no feedback about their payoffs until the end of the experiment.

In stage 1, subjects played three versions of the game against a random opponent. Each game

has a different arrangement of the amounts in the boxes, see Figure 2, with the highest amount

always located on the far right. In the baseline version the numbers are arranged in increasing

order from left to right. In the extreme (E) version the numbers are arranged in decreasing order

except that the rightmost box again contains the highest number. Finally, in the moderate (M)

version, the second to highest amount is put in the middle. To control for order effects, subjects

were randomly assigned (in equal proportions) to one of 6 possible orderings of the three game

variations. In stage 2, subjects played the games in the same order as they had in stage 1, but

5The complete set of instructions can be found in Appendix B. Instructions were read aloud to establish
common knowledge.
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20191817161514131211B

Treatment “11–20”

20151617181911121314M

20111213141516171819E

10987654321B

Treatment “1–10”

10567891234M

10123456789E

Figure 2: In one treatment, subjects played the three versions of the “11-20” game shown in the top
panel. The baseline (B) version corresponds to Arad and Rubinstein’s (2012) basic version while the
moderate (M) and extreme (E) games reorder the positions of the 10 numbers and place 19 in the
middle and in leftmost node respectively. The other treatment consists of three parallel versions of
the “1-10” game where the request amounts range from 1 to 10 and the bonus is R = 8.

now a subject’s payoff was equal to the average payoff resulting from all possible matches (each

session had 24 subjects so there were 23 possible matches). Stage 3 also used population payoffs

but now play was preceded by a belief-elicitation stage: subjects were asked to guess how many

of the other 23 participants would choose each of the amounts. Subjects were rewarded for their

guesses using a quadratic scoring rule. Table 1 provides a summary of the experimental design,

which has both between-subjects (“11-20” or “1-10” game) and within-subjects elements (three

variations of the game played with standard payoffs, population payoffs, and population payoffs

plus belief elicitation).

To determine subjects’ earnings from the experiment, one game was randomly chosen from

each stage and subjects received their payoff in that game, plus the payoff from the belief

elicitation process corresponding to the game picked from stage 3, and a show-up fee of 10

Swiss Francs. This resulted in average earnings of 28.91 Swiss Francs.
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Table 1. Experimental Design

A total of 144 subjects participated in 6 experimental sessions, 24 in each. We conducted

three sessions for both treatments. Subjects were recruited among undergraduate students

at ETH Zurich and the University of Zurich using ORSEE (Greiner, 2015). The experiment

was conducted in the Experimental Economics Lab of the University of Zurich using z-Tree

(Fischbacher, 2007).

4. Experimental Results

The top panel of Figure 3 shows the distribution of choices made by the 72 subjects in the

three variations of the “11-20” game, and the top panel of Figure 4 shows choices for the other

72 subjects in three parallel variations of the “1-10” game.6 For each game, we pool the choices

from the three different stages of the experiment.7 The baseline game of the “11-20” treatment

replicates Arad and Rubinstein’s (2012) main findings: 10% of the choices correspond to level

zero, 77% of the choices correspond to levels 1-3, and only 12.5% of the choices reflect a level

higher than three. These percentages are not different at the 5% level from those reported by

Arad and Rubinstein (2012): 6% level zero, 74% levels 1-3, and 20% levels higher than three.8

6Comparing treatments “11-20” and “1-10,” the distributions are significantly different according to a chi-
square test (p < 0.05 for each game), which is mainly driven by the higher percentage of level-0 and level-1
choices in “1-10.” The percentage of level-0 choices increases from 18% to 36% in game M and from 27% to
46% in game E. The difference is significant for both game (p < 0.05, proportion test). In game B, the biggest
difference is in the level-1 choices (23% to 35%, p < 0.05) whereas level-0 choices are almost the same (11% in
“1-10” and 10% in “11-20”). All p-values reported in this paper are two-sided, unless otherwise stated.

7Recall that each experimental session consists of three stages that differ in the payment rule and whether
or not beliefs were elicited, see Table 1. In each stage, participants made decisions in games B, M, and E.
There are six possible ways to order the three games and we randomly assigned 4 participants to each of the
six orderings (for a total of 24 subjects per session). Two-sided chi-square tests regarding the equality of choice
distributions indicate no significant order effects within each stage and no significant differences across the three
stages (for all three games and in both treatments). In the analyses reported below we therefore pool data from
all three stages, unless otherwise stated.

8Proportion tests comparing the three percentage pairs yield p-values of 0.208, 0.511, and 0.075 respectively.
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Figure 3: Observed (top) and predicted (bottom) choice distributions by game in the 11-20 treatment.

Figure 4: Observed (top) and predicted (bottom) choice distributions by game in the 1-10 treatment.
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In the third part of the experiment subjects reported their beliefs by indicating how many

of the other subjects they believed would choose each box. The top panel of Figure 6 shows

the aggregate distribution of reported beliefs made by the 72 subjects in the three variations of

the “11-20” game, and the same is shown for the subjects that played the “1-10” game in the

top panel of Figure 7. The aggregate data on beliefs does not show whether individual beliefs

are point-estimates or if they expect there to be noise in others’ choices. Reporting a single

non-zero box would reflect single-point beliefs. The more non-zero boxes reported, the noisier

a subject’s beliefs. Table 2 summarises this information for the two treatments. As can be seen

in the table, the vast majority of reported beliefs have a support spread over 3 and 7 choices.

Based on this we find that our data exhibits evidence of a “common knowledge of noise”.

Treatment 11-20 Treatment 1-10

Non-zero boxes Freq Percent Non-zero boxes Freq Percent

10 6 3% 10 4 2%

9 7 3% 9 2 1%

8 10 5% 8 10 5%

7 37 17% 7 14 6%

6 30 14% 6 23 11%

5 40 19% 5 51 24%

4 48 22% 4 46 21%

3 32 15% 3 36 17%

2 6 3% 2 16 7%

1 0 0% 1 14 6%

Total 216 100% Total 216 100%

Table 2: Individual beliefs in terms of non-zero boxes reported for each treatment.

In what follows we study how well our experimental results are captured by the four mod-

els of Section 2: Nash, QRE, Level-k, and Noisy Introspection.9. First, we apply standard

maximum-likelihood techniques to pin down the parameters of these models to fit behaviour in

the baseline “11-20” game (B11−20). Then we evaluate the performance of the different models

in terms of their out-of-sample predictive power in the other five game variations.

One issue that needs to be addressed upfront is that both Nash and level-k have a “zero-

likelihood problem.” For instance, for the 11-20 baseline treatment the Nash equilibrium pre-

9Another family of models to consider would be the Cognitive Hierarchy models (see Camerer, Ho and Chong
2004). In these a player of level k believes others to be from a distribution over all levels smaller than k. We
omit analysis of such models as their performance is similar to some of the level-k or Nash models we analyse
and it would not add much to our discussion.
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dicts that requests less than 15 should not be observed.10 We deal with the zero-likelihood

problem using two models of “noise” or “error.” In one approach, players behave as predicted

by the original model with probability 1− ε and with probability ε they randomize uniformly

over all actions. Such action trembles are insensitive to their costs. Alternatively, the logit

choice rule in (1) also allows for trembles to occur but such that their likelihood falls with the

cost which we refer to as payoff trembles. The different error structures for Nash and level-k

are shown in Table 3.

Another issue with level-k models is the specification of level-0 behaviour. In the baseline

game, as in the original game in Arad & Rubinstein (2012), the best response of a level-1 is to

choose 19, irrespectively of whether level-0 chooses 20 or randomises uniformly. This feature

is not preserved in our other games. We therefore also allow for these two different ways

of specifying the behaviour of level-0. The second column of Table 3 specifies which level-0

behavior is used in each level-k model estimated

The QRE and NI models also employ the logit choice rule and, hence, they are not prone to

a zero-likelihood problem. An important distinction is that in QRE and NI, players are aware

that others’ choices follow the logit rule, i.e. that their behavior is noisy. In contrast, Nash and

level-k retain the best-response assumption and noise is only introduced to explain deviations

from the model’s predictions.

4.1. Data

A total of 72 subjects played the 11-20 version of games B, M, E, and another 72 subjects

played the 1-10 version, see Figure 2. Let G denote the set of all six games. Each subject

played all three games (B, M, and E) in each of the three stages of the experiment for a total

of 9 choices. Let xig,s denote the observed choice of subject i = 1, . . . , 144 in game g ∈ G played

in stage s ∈ {1, 2, 3}. Define xig = {xig,1, xig,2, xig,3}, xi = {xiB, xiM , xiE} and xg = {x1g, . . . , x144g }.

In each of the three games played in stage 3, each subject reported beliefs about the op-

ponent’s choices. Subjects reported their beliefs as the number of opponents, out of the 23

in the session, they believed would make one of the ten possible choices in game g. Let

big = {big,1, . . . , big,10} denote the reported beliefs for subject i in game g, where each entry

is a non-negative integer and the entries sum to 23, and define bi = {biB, biM , biE}.
10It is readily verified that there are no pure-strategy Nash equilibria and that any mixed equilibrium includes

20. Indifference between 19 and 20 dictates that 20 is played with probability 0.05. Likewise, indifference
between 18 and 20 dictates that 19 is played with probability 0.10. This logic continues for lower request amounts
until the choice probabilities add up to 1. In the mixed-strategy Nash equilibrium for the 11-20 baseline game
the probabilities of each request amount between 11 and 20 are therefore (0,0,0,0,0.25,0.25,0.20,0.15,0.10,0.05).
The Nash equilibria of the other game variations can be computed similarly.
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4.2. Estimation using 11-20 baseline data only

We apply maximum-likelihood techniques to estimate parameter values for the different models

using only the 11-20 baseline treatment. For Nash we estimate an error parameter ε ∈ [0, 1],

which corresponds to trembles in actions, or a logit error parameter µ ≥ 0, which corresponds

to cost-sensitive errors. For QRE we only estimate the latter. The level-k and NI models allow

for heterogeneity among subjects. We model the distribution of types for each such model

as a Poisson distribution (truncated at 9, the highest level type we can distinguish). This is

characterised by a single parameter τ . Both parameters, τ and the common error parameter

(ε or µ), are estimated in a finite mixture model. Let θM represent the set of parameters

corresponding to model M ∈ {Nash,QRE, level-k,NI}, e.g. θQRE = {µ} while θNI = {µ, τ}.

Given a game g and parameter values θM , each model generates a probability distribution

pM(a | θM , g) over the set of possible actions a ∈ A. For example, for QRE this distribution

follows from the fixed-point condition

pM(a |µ, g) = φµ(pM(a |µ, g)) ∀a ∈ A

and is the same for all players, i.e. behavior is homogeneous. In contrast, in the NI model we

allow for different types

pM(a |µ, k, g) =

k times︷ ︸︸ ︷
φµ(φµ(· · ·φµ(φ∞(a)))) ∀a ∈ A

where φ∞(a) = 1/10 for all a ∈ A, i.e. uniform randomization.

An individual’s likelihood function evaluated at θM given the observed choices, xi, in the

set of games G for the homogeneous models is given by:11

LiM(θM |xi, G) =
∏
g ∈G
s=1...3

pM(xig,s | θM , g)

and for models with heterogeneity by

LiM(θM |xi, G) =
9∑

k=0

f(k; τ)
∏
g ∈G
s=1...3

pM(xig,s | θM , g)

11Subjects played variants of the 11-20 game or the 1-10 game, but not both. To keep the notation simple
we use the convention that pM (xig,s | θM , g) = 1 if subject i did not play a certain game g.
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where f(k; τ) = e−τ τk

k!
/(
∑9

`=0
e−τ τ`

`!
) is the truncated Poisson distribution. The log-likelihood

function evaluated at θM given the observed choices, xg, in game g ∈ G is then:

logL(θM |xg, g) =
144∑
i=1

log(LiM(θM |xig, g))

We obtain parameter estimates by maximizing the log-likelihood function, using data from the

11-20 baseline game only:

θ∗M = argmax
θM

(
logL(θM |xg, g = B11-20)

)
The parameter estimated values are summarized in Table 3. It is interesting to note here that

for most level-k models and noisy introspection the estimated value for τ , the level distribution

parameter, lies very close to what is found in similar exercises in the literature (see Camerer et

al. 2004). These values place more than 80% of the distribution’s mass at levels 0 to 3. The

“odd one out” appears to be the level-k model with level 0 being uniform and payoff trembles:

this lower estimate for τ places more than 70% of the mass on levels 0 and 1.

4.3. Out-of-sample performance: choices

We next evaluate the out-of-sample performance of the various models. For this we use all

games, including the 1-10 games, except for the B11−20 game that was used to estimate the

models’ parameters. We denote this set of games as G′ = G \ {B11−20}. The subjects that

played the 1-10 games are different from the subjects whose 11-20 baseline choices were used

to estimate model parameters. Still, there is no reason to suspect that there are systematic

differences between the pool of 72 subjects that played the 11-20 game and the pool of 72

subjects that played the 1-10 games. The predicted choice distributions under the NI model

are depicted in the lower panel of Figure 3 for treatment 11-20 and Figure 4 for treatment

1-10.12

We will measure performance by the likelihood of the observed data given a model’s pre-

diction. Given a game g ∈ G′ and the estimated values, θ∗M , shown in Table 2, each model

generates a probability distribution over the possible actions pM(a | θ∗M , g). We use this to cal-

culate each subject’s likelihood for making the particular choices in all games in G′. We then

12In the appendix we provide similar graphs with the predicted choice distributions for all the models we
estimate.
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Figure 5: Predictive performance of the models against benchmarks.

take logarithms and sum up for all subjects to obtain the log-likelihood of the observed data

LM =
144∑
i=1

log
(
LiM(θ∗M |xi, G′)

)
Notice that we treat all choices made by a particular subject across all games she played as

a single observation. This strong consistency requirement does not make a difference for

homogeneous models but sets a higher bar for models with heterogeneity. It implies that a

subject maintains his type across games. We believe this is the correct way of evaluating

models with heterogeneity, unless one has a model of how individuals’ types change across

game froms.13 However, our results are robust to imposing only weak consistency, i.e. when

subjects’ types are allowed to vary across games (see Appendix A).

To derive a score that lies between 0% and 100%, we compare this log-likelihood with

two benchmarks. One is the upper-bound on the log-likelihood set by the model that exactly

reproduces the choice frequencies observed in the experiment. The other is a “lower-bound”

set by completely random choice. Let ng(a) =
∑

i

∑
s 1(xig,s = a) denote the total number of a

13There is an active literature focusing on the issue of persistence of types across games. See for example
Georganas et al. (2015) and Cooper et al (2015). Alaoui and Penta (2015) develop a theoretical a model in
which levels of thinking are determined endogenously.
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choices in game g then the upper-bound on the log-likelihood is given by

L =
∑
g∈G′

∑
a∈A

ng(a) log
(ng(a)

3 · 72

)
The lower-bound based on uniform randomization is simply L = (72 · 6 + 72 · 9) · log(1/10),

since subjects made 3 choices from a set with 10 possible actions in each game, and we consider

2 games (we exclude the B11-20 game) for the 72 subjects that played the 11-20 games and

and all 3 games for the 72 subjects that played the 1-10 games. We can now define a model’s

likelihood score as

SLM =
LM − L
L− L

× 100%

The likelihood scores for the different models are listed in the final column of Table 2 and are

also shown in the left panel of Figure 5.

Result 1. Based on likelihood scores, models that employ cost-sensitive payoff trembles predict

choices significantly better than those based on action trembles.

Support. The models are non-nested but a Vuong closeness test shows that the five models

that use cost sensitive errors (five right bars in the left panel of Figure 5) perform better at the

0.001% level than the three models based on action trembles (three left bars). �

Result 2. Based on likelihood scores, models that assume common knowledge of noise predict

choices significantly better than those that don’t.

Support. A Vuong closeness test shows that the QRE and NI models that assume common

knowledge of payoff trembles (two right bars in the left panel of Figure 5) perform better at

the 0.001% level than the three payoff-tremble models that don’t (three middle bars). �

Interestingly, the homogeneous QRE model performs as well as the heterogeneous NI model, at

least in terms of likelihood. The reason for good performance differs for the models, however.

The QRE model has a higher error rate and, hence, results in “flatter” choice distributions

than NI. When likelihood is the scoring criterion this helps in the sense that even though QRE

is less likely to be “right,” when it is “wrong” the penalty is not that high.

4.4. Out-of-sample performance: beliefs

The top panel of Figure 6 and Figure 7 presents the observed belief distribution by treatment

and game. The bottom panel shows the predictions under the NI model. To measure how well

each model predicts beliefs, we follow a similar procedure as described in the choice section.
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Given a game, g ∈ G, and the estimated parameters, θ∗M , each of the models predicts a belief

distribution, bM(a | θ∗M , g), over the opponent’s actions. We use big,a to denote i’s guess about

how many others choose action a in game g. Like for choices, we require strong consistency.

Thus, an individual’s likelihood function for beliefs evaluated at θM , given the reported beliefs,

xig, in the set of games G for the homogeneous models is given by:14

Bi
M(θ∗M | bi, G) =

∏
g ∈G
s=1...3

∏
a∈A

bM(a | θ∗M , g)b
i
g,a

and for models with heterogeneity by

Bi
M(θ∗M | bi, G) =

9∑
k=0

f(k; τ)
∏
g ∈G
s=1...3

∏
a∈A

bM(a | θ∗M , g)b
i
g,a

We then can define the log-likelihood for beliefs as

BM =
144∑
i=1

log
(
Bi
M(θ∗M | bi, G)

)
Note that we now consider all six games, including the B11−20 game as reported beliefs were

not used in model parameter estimation. The upper bound is given by

B =
72∑
i=1

∑
g ∈G

∑
a∈A

big,a log

(∑
i b
i
g,a

23 · 72

)

while the lower bound is B = 144 · 96 · log(1/10). The likelihood score is then

SBM =
BM − B
B − B

× 100%

The calculated values for all models are presented in the right panel of Figure 5.

Result 3. Based on likelihood scores, level-k models predict beliefs significantly worst than

uniformly random beliefs.

Support. A Vuong closeness test shows that all four level-k model specifications perform worst

14In both cases we ignore a multinomial coefficient,
(big,1+...+big,10)!

b1g,1!···big,10!
, as it would also appear in the upper and

lower bounds and therefore cancels when defining the likelihood score for beliefs.
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at the 0.001% level than a model in which beliefs are draws from a uniform distribution over

all possible choices. This random model defines the 0% limit for the likelihood score. �

Result 4. Based on likelihood scores, models that assume common knowledge of noise predict

beliefs significantly better than those that don’t.

Support. A Vuong closeness test shows that QRE and NI perform significantly better than

Nash and the level-k models at the 0.001% level. The difference between QRE and NI is not

statistically significant (p-value = 0.35). �

4.5. Choice Consistency

Up to this point we find QRE and NI are the two winning models in predicting subjects’

aggregate behavior and there is no significant difference between these two. To further compare

the performance of these two models, we turn our attention to individual choices. There

is significant heterogeneity in choices not only across subjects, but within subjects as well.

Subjects often switched to different choices when playing the same game again in different

stages of the experiment. To evaluate how well either model predicts individual switching

patterns, we calculate the expected number of times a particular subject will make the same

choice in a particular game across all three stages (every time, only twice, never) based on the

estimated models and compare it to the actual data. The results are shown in Figure 8.

The QRE model captures some heterogeneity but it tends to overestimate the number of

times a subject never repeats the same choice and underestimate the times a subject consistently

repeats the same choice in all three stages.15

Result 5. The Noisy Introspection model predicts switching behavior significantly better than

the QRE model.

Support. The Fisher’s exact test reports significant difference in the overall distribution

between the QRE and NI predictions, p < 0.001. The predicted percentage of always switching

behavior falls from 45.2% under the QRE to 37.4% under the NI model, getting closer to the

observed 25.5%, and this difference is significant according to a proportion test, p = 0.02. The

predicted percentage of never switching behavior increases from 6.4% under the QRE to 16.5%

under the NI model, moving towards the observed 26.9%, and also this difference is significant

according to a proportion test, p < 0.001. �

15More specifically, a two-sided proportion test shows significant difference at 1% level between QRE prediction
and actual data in the percentage of always switching behavior and the percentage of never switching behavior.
Using the Fisher’s exact test to compare the distributions across three categories reveals significant difference
at 1% as well.
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Figure 6: Observed (top) and predicted (bottom) belief distributions by game in the 11-20 treatment.

Figure 7: Observed (top) and predicted (bottom) belief distributions by game in the 1-10 treatment.
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Figure 8: Observed distribution of choices.

Noisy introspection outperforms QRE because it predicts heterogeneity across subjects and

choice consistency within subjects. It should be pointed out though that the NI predictions are

significantly different from the data at the 1% level according to a Fisher exact test.

5. Conclusions

Arad and Rubinstein (2012) suggest the 11-20 game as a tool to study level-k reasoning. We

concur but propose to take their suggestion a step further: the 11-20 game plus some variations

form an ideal tool to study a variety of models of strategic thinking, not just level-k. After all,

choice behavior in the basic 11-20 game is well explained by several models and it is natural to

explore game variations that can discriminate between them. More generally, small variations,

such as the ones proposed here, allow experimenters to probe a series of questions related to

depth of reasoning, belief formation, and learning in games.

Standard models such as Nash equilibrium or level-k, operationalized with the injection

of uniform noise to avoid the zero-likelihood problem, do a poor job in when brought to our

experimental data. Allowing for the noise to be payoff dependent helps the performance of these

models, but it should be noted that predictions for specific games may be significantly different

than the ones given by the standard models. Even so, an important ingredient seems to be

missing. Our data on beliefs indicate that players are aware of the noise in others’ behaviour.
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In fact we find that the best performance across all variations of the 11-20 game we used is

achieved by the models that incorporate such “common knowledge of noise”: QRE and noisy

introspection.

There is one ingredient of the level-k model that while not decisive, does seem to reflect

an important feature of the data: heterogeneity. The noisy introspection model we estimate

extends the homogeneous model of Goeree and Holt (2004) with a hierarchy of types. This

element moves predictions closer to the data compared to the QRE model, although still not

close enough. In light of these results we encourage further investigation to understand the

heterogeneity in strategic thinking, but we strongly encourage this to be done in a framework

where payoff dependent noise and “common knowledge of noise” are explicitly accounted for.

The noisy introspection model provides such a framework.
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A. Appendix: Estimation Results Under Weak Consistency

The predictive performance of the estimated models is calculated imposing strong consistency.

While this requirement seems to us to be appropriate given the models’ assumptions, one might

worry that our results are driven by it. Here we show that similar results are obtained if we

only apply weak consistency, which treats a subject’s choices or reported beliefs in one game as

independent from those in another game. In fact, results are even more favourable to the noisy

introspection model than under strong consistency. Notice that this affects only the level-k and

noisy introspection models. Since QRE and Nash are homogeneous models it does not make

a difference whether choices are considered independently for a game or even for each subject:

log-likelihood is calculated by taking the logarithm of a product of products. On the other

hand, for models with heterogeneity we estimate a finite mixture model and the log-likelihood

is the logarithm of a product of a weighted sum of products. Formally, relaxing consistency

from strong to weak results in the following individual’s likelihood function for choices in models

with heterogeneity:

LiM(θM |xi, G) =
∏
g ∈G

(
9∑

k=0

f(k; τ)
3∏

s=1

pM(xig,s | θM , g)

)

and for beliefs:

Bi
M(θM | bi, G) =

∏
g ∈G

(
9∑

k=0

f(k; τ)
3∏

s=1

∏
a∈A

bM(a | θM , g)b
i
g,a

)

The likelihood scores obtained given weak consistency are reported in Table 3.
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B. Appendix: Predicted Choices

The following graphs show the predicted distribution of choices according to each of the esti-

mated models for each of the games in both treatments.
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C. Appendix: Experimental Instructions

Instructions	–	Treatment	“11‐20”	

Thank	 you	 for	 participating	 in	 this	 session.	 The	 experiment	 will	 involve	 a	 series	 of	
decisions.	Each	of	 you	may	earn	different	 amounts.	The	amount	you	earn	depends	on	
your	decisions	and	those	of	others.	The	exchange	rate	used	in	the	experiment	is	4	points	
for	 1	 CHF.	 You	 also	 receive	 a	 10	 CHF	 participation	 fee.	 Upon	 completion	 of	 the	
experiment,	you	will	be	paid	individually	and	privately.	24 participants take part in today’s 
experiment.	
	
Please	remain	quiet!	
You	will	be	using	the	computer	terminal	 for	the	entire	experiment,	and	your	decisions	
will	 be	 made	 via	 your	 computer	 terminals.	 Please	 DO	 NOT	 talk	 or	 make	 any	 other	
audible	noises	during	 the	 experiment.	 If	 you	have	 any	questions,	 raise	 your	hand	 and	
your	question	will	be	answered	so	that	everyone	can	hear.	

The	 experiment	 consists	 of	 three	 parts.	 You	will	 now	 receive	 instructions	 on	 the	 first	
part	of	the	experiment.		

Part	1	

The	 game:	You	 and	 another	 participant	 in	 the	 experiment	 are	 randomly	matched	 to	

play	the	following	game:	

	

	

On	your	screen	you	will	see	10	boxes	in	line,	containing	different	amounts	(like	the	ones	

above).	 Each	 participant	 requests	 an	 amount	 of	 points.	 The	 amount	 is	 chosen	 by	

selecting	one	of	the	10	boxes.	Each	participant	will	receive	the	amount	in	the	box	he/she	

selected.	 A	 participant	 will	 receive	 an	 additional	 amount	 of	 20	 points	 if	 the	 selected	

amount	is	exactly	'one	to	the	left'	of	the	amount	that	the	other	participant	chooses.	

Profit:	You	will	 play	 this	 game	 three	 times.	One	of	 these	 three	 rounds	will	 be	 chosen	
randomly	 and	 your	 earnings	 in	 that	 round	 will	 be	 your	 profits	 for	 this	 part	 of	 the	
experiment.	You	will	be	 informed	about	your	profits	 in	 this	and	 the	other	parts	at	 the	
end	 of	 the	 experiment.	 Please	 take	 your	 time	 and	 think	 through	 each	 of	 your	
decisions	as	you	will	be	paid	for	only	one	of	them.	

Example:	

Suppose	the	boxes	are	arranged	as	shown	above,	and	you	choose	12:	

 If	your	opponent	chooses	17,	you	earn	12	points	and	he	earns	17.	
 If	your	opponent	chooses	15,	you	earn	12+20=	32	points	and	he	earns	15	points.	
 If	your	opponent	also	chooses	12,	you	both	earn	12	points.	
 If	your	opponent	chooses	19,	you	earn	12	points	and	he	earns	19+20=39	points.	

13  16  20  18  19  12  15  11  17  14 
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Part	2	

The	 game:	 In	 this	 part	 of	 the	 experiment	 you	will	 play	 the	 same	 game	 as	 in	 part	 1,	

except	that	now	your	choice	will	be	matched	against	each	of	the	choices	made	by	all	the	

other	participants	in	the	experiment.	Your	earnings	in	points	will	be	equal	to	the	average	

earnings	you	get	from	playing	against	all	other	participants.	

Example	

Suppose	 there	 are	only	4	participants	 in	 the	 experiment:	 you,	 Participants	1,	 2	 and	3.	

The	amounts	are	as	follows:	

	

You	choose	15	and	the	other’s	choices	are:	

 Participant	1	chooses	16	

 Participant	2	chooses	19	

 Participant	3	chooses	11	

Your	earnings	against	each	other	participant	are:	

 Against	Participant	1:	15	

 Against	Participant	2:	15	

 Against	Participant	3:	35	

Your	average	earnings	in	this	round	are:	

	
	 	 	 	 	

#	 	 	
21.7		

	

Profit:	You	will	 play	 this	 game	 three	 times.	One	of	 these	 three	 rounds	will	 be	 chosen	
randomly	and	your	average	earnings	 in	 that	round	will	be	your	profits	 for	 this	part	of	
the	experiment.		

13  16  20  18  19  12  15  11  17  14 
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Part	3	

The	game	

In	this	part	of	the	experiment	you	will	play	the	same	game	as	in	part	2,	except	that	this	

time	before	you	make	a	choice	you	will	have	to	guess	what	the	other	participants	will	do.	

Below	each	of	the	10	amounts	you	will	see	a	box	where	you	can	enter	your	guess	about	

the	number	of	other	participants	you	think	will	choose	that	amount.	The	sum	of	 these	

numbers	must	be	equal	to	23,	the	number	of	other	participants	in	today’s	experiment.		

	

You	will	earn	additional	points	from	accurately	guessing	others’	choices.	The	closer	your	

guess	ends	up	being	to	the	actual	distribution	of	choices,	 the	more	points	you	earn.	 In	

particular,	 the	 following	 formula	will	be	used	to	determine	how	many	points	you	earn	

from	your	guess:	

20
10
23

	 	

	

	

Example	

There	are	23	other	participants	and	the	amounts	are	arranged	as	follows:	

	

		

	

Suppose	that	you	guess	that:	

 5	participants	will	choose	16	
 3	participants	will	choose	18	
 9	participants	will	choose	12	
 4	participant	will	choose	15	
 2	participant	will	choose	11	

Then	you	should	fill	out	the	boxes	as	follows:	

	

	

	

13  16  20  18  19  12  15  11  17  14 

                   

13  16  20  18  19  12  15  11  17  14 

0  5 0  3 0  9  4  2  0  0 

(continue reading on the back) 
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Now	suppose	it	turns	out	that:	

 8		participants	chose	16	
 3	participants	chose	18	
 4	participants	chose	12	
 8	participants	chose	17	

The	 following	 table	 shows	your	guess	and	 the	 realized	choices,	as	well	 as	 the	number	
that	 corresponds	 to	 the	 square	of	 the	difference	between	your	 guess	 and	 the	 realized	
number,	for	each	amount	

Amount	 13	 16	 20	 18	 19	 12	 15	 17	 11	 14	

Guess		 0	 5	 0	 3	 0	 9	 4	 0	 2	 0	

Realized		 0	 8	 0	 3	 0	 4	 0	 8	 0	 0	

	 0	 9	 0	 0	 0	 25	 16	 64	 4	 0	
		

The	formula	then	gives:	

20
10
23

0 9 0 0 0 25 16 64 4 0 . 	

Given	 this	 formula,	 you	maximize	 the	 expected	 number	 of	 points	 you	 earn	 by	
giving	 a	 guess	 that	 is	 as	 close	 as	 possible	 to	 your	 true	 estimate	 of	what	 other	
participants	will	do.	

Profit	

You	will	play	this	game	(guess	+	choice)	three	times.	One	of	these	three	rounds	will	be	

chosen	randomly	and	your	average	earnings	in	that	round	(guess	+	choice)	will	be	your	

profits	for	this	part	of	the	experiment.		

After	finishing	this	part	you	will	be	presented	with	a	table	indicating	your	profit	for	the	

experiment.	Please	wait	patiently	at	your	seat	until	you	are	called	to	collect	your	profit.	
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