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Summary. We consider an environment where individuals sequentially choose
among several actions. The payoff to an individual depends on her action choice,
the state of the world, and an idiosyncratic, privately observed preference shock.
Under weak conditions, as the number of individuals increases, the sequence of
choices always reveals the state of the world. This contrasts with the familiar result
for pure common-value environments where the state is never learned, resulting
in herds or informational cascades. The medium run dynamics to convergence can
be very complex and non-monotone: posterior beliefs may be concentrated on a
wrong state for a long time, shifting suddenly to the correct state.
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1 Introduction

We consider an environment where an arbitrary number of individuals with dif-
ferent information choose sequentially among several actions, and identify a set
of conditions under which information will be successfully revealed. The original
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analysis by Banerjee (1992) and Bikhchandani et al. (1992), and much of the sub-
sequent literature, assumes there are two possible signals, two possible states, two
possible actions, and all individuals have the same preferences, conditional on the
state of the world. In such environments, the public information revealed by the
choices of the first several individuals dominates the private information of subse-
quent decision-makers. Once this occurs, later choices are made independently of
privately held information, creating an informational cascade. In a cascade, beliefs
about the state of the world become “stuck” as decisions quickly become unrespon-
sive to privately held information. Furthermore, once a cascade starts all individuals
make the same choice because they have identical preferences, a situation known
as a herd.

We generalize this setting in two ways. First, we allow for a continuum of
preference types, e.g. some decision makers have a strong preference for action 2
while others have a strong preference for action 1, while yet others have very little
preference one way or the other. Second, we allow for an arbitrary (finite) number
of actions and states. For this general setting we characterize general conditions
under which beliefs converge to the true state.

Due to the idiosyncratic tastes in our model, different actions may be selected
even when beliefs have (almost) converged. In other words, while there is con-
vergence of beliefs, choices continue to fluctuate over time and no herding occurs
in our model. With only two possible action choices, there is a “correct” and an
“incorrect” action, when private preference shocks are netted out, in each state. We
show that the true state becomes known even when the fraction of people choosing
the correct action is arbitrarily small. We provide an example showing how behav-
ior may converge to the incorrect alternative (having the appearance of a “bad”
cascade), but beliefs will always converge to the correct one.

Our approach extends the previous literature in that it permits a tractable analysis
when there is an arbitrary number of states, actions, and signals. The inclusion
of multiple states also allows for a deeper understanding of the dynamics of the
underlying stochastic belief process. Convergence of beliefs may seem to imply
trivial or monotonic dynamics. Indeed, we show that, on average, the weight public
beliefs assign to the true state rises. Yet it is not the case that any specific trajectory
of beliefs will necessarily follow a monotone dynamic. We illustrate this with an
example where beliefs are likely to first drift toward an incorrect state and then
suddenly shift to converge upon the true state.

While the main focus of the cascade literature has been on information aggrega-
tion failures, a few other authors have obtained positive convergence results under
different assumptions.1 Lee (1993) provides conditions under which full learning
must occur in a pure common-value model. His result relies on a sufficiently rich
action space, so that actions can perfectly reveal signals. Smith and Sorenson (2000)
provide the most general result to date. They show that complete learning can occur
if there is a continuum of “unbounded” private signals, i.e. signals that are arbi-

1 There is also a more distantly related literature on Bayesian learning in games. The paper in this
literature closest to ours is Jackson and Kalai (1997), who identify sufficient conditions under which
agents in a population are able to infer the true distribution over player types by observing a history of
stage game strategies. Our environment does not satisfy the conditions for their results.
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trarily close to fully revealing. The intuition behind their result is that every prior
public belief can be updated in one step to any posterior private belief.

In contrast, we show that even with bounded signals, convergence of beliefs
to the true state occurs with sufficiently rich preference heterogeneity. Preference
diversity in our model takes the form of an additive private-value component. That
is, the utility to an agent t from choosing action a in state k is equal to the sum of
a common value component Πa,k and a private value component vt

a. An important
corollary to our main theorem is that beliefs always converge to the true state in
any regular Quantal Response Equilibrium2 of the simple Bikchandani et al. (1992)
and Banerjee (1992) models.3 This implication suggests a possible explanation for
the complex dynamics of behavior that have been observed in information cascade
experiments.4

The theoretical reason beliefs converge is twofold. First, all actions are chosen
with positive probability in every state of the world. Second, action probabilities are
monotone in expected payoffs, and therefore actions always reveal some informa-
tion. This is similar to the intuition for convergence with unbounded beliefs. There,
too, learning never stops, and all actions are taken with some positive probability
because decision makers can have any private belief, regardless of the public belief.
That is, for any public belief, there is a positive measure set of private signals that
swamp this belief. Likewise, in our model the assumption that the private values
have full support implies that the private value can swamp the common value com-
ponent for a positive measure of types, for any public belief. Hence beliefs never
settle down and standard martingale arguments guarantee that beliefs cannot limit
to an incorrect state with positive probability: full learning obtains.

However, there are also some notable differences between our and Smith and
Sorenson’s (2000) results. While both employ a full support assumption (beliefs in
their case, and private values in ours), in our model this assumption is not sufficient
to achieve complete learning. In particular, with more than two states, there are
robust examples where complete learning is not guaranteed under any assumption
about the distribution of private values, even though convergence would occur with
unbounded signals. We provide a simple example where there are three possible
states and two actions, a continuum of private values with full support, but public
beliefs can get stuck at a continuum of interior points. This kind of information
aggregation failure is robust unless a rank condition on the common value payoffs
is satisfied. Our main theorem is a sufficiency result showing that this rank condition,
together with full support of the private values distribution and some minor technical
conditions, guarantees convergence of beliefs to the true state.

A second difference is that in our model, an agent’s payoff is additively separable
in the private and common value component, where the latter is the same for all
agents, which precludes the possibility of confounded learning. Furthermore, the
private values are drawn from a continuous density. In contrast, Smith and Sorensen

2 See McKelvey and Palfrey (1995, 1998) and Goeree et al. (2005).
3 This is proved for the logit quantal response equilibrium in Goeree et al. (2004).
4 These dynamics are especially evident in long sequences of decisions, as in Goeree et al. (2004).
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(2000) considered only a finite set of preference types. It turns out that this makes a
big difference: with only a finite number of types, learning is necessarily incomplete.

The paper is organized as follows. The next section presents the model. The
evolution of public beliefs and optimal choice behavior are characterized in Sec-
tion 3 and Section 4 respectively. Section 5 develops the main convergence result.
Section 6 contains a more detailed analysis of the dynamic processes of beliefs and
actions. In Section 7 we connect our results to some related literature and discuss
generalizations. Section 8 concludes. Most proofs are sketched in the body of the
paper, with complete proofs given in an Appendix.

2 The model

There is a countable set T = {1, 2, · · · } of agents who choose, in sequence, one of
several actions. For each t ∈ T , let at ∈ A denote agent t’s chosen action where
A = {1, · · · , A} is the set of A > 1 available actions. Possible states of the world
are elements of the set K = {1, · · · , K} where K > 1. Agents do not know the
state of the world but have common prior beliefs that the state is k with probability
P 0

k . We assume P 0
k > 0 for all k so that all states are possible a priori.

2.1 Signals

Each agent receives one conditionally independent private signal about the state.
The finite set of signals is denoted S = {1, · · · , S} where S > 1. In state k,
agent t receives signal st ∈ S with probability q(st|k). This defines a matrix,
Q, with elements qsk ≡ q(s|k) for s ∈ S and k ∈ K. We say that signals are
informative when the probability distributions of signals differ across states, i.e. no
two columns of Q are the same. Pairs of states for which this does not hold are
obviously indistinguishable.

Definition 1. Signals are informative when k �= k′ ∈ K implies qsk �= qsk′ for
some s ∈ S.

Furthermore, we say that signals are bounded if no single signal can reveal the

state of the world: Prob(k|s) ≡ qskP 0
k∑K

k′=1 qsk′ P 0
k′

< 1 for all k ∈ K, s ∈ S, and all

interior P 0. This inequality holds when at least two elements in every row of Q are
strictly positive.

Definition 2. Signals are bounded if for all s ∈ S there exist k �= k′ ∈ K such that
qsk > 0 and qsk′ > 0.

Denote the rank of Q by r. The number of rows of Q generally exceeds r, as 2 ≤
r ≤ min(K, S).5 If so, the number of signals can be reduced by combining different
elements of S into r “independent” signals. Pick r − 1 signals s̃1, · · · , s̃r−1 ∈ S

5 Under Assumption 1 the rank of Q is at least 2, since if r = 1 all columns of Q would have to be
multiples of the first column. Since all columns add up to 1, however, they would have to be identical,
which violates the informative-signal assumption below.
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that correspond to r − 1 linearly independent rows of Q. Let s̃r correspond to
the union of all other elements of S. In other words, one can think of receiving
an s̃r signal as being equivalent to not receiving any of the s̃1, · · · , s̃r−1 signals.
Define the reduced signal set S̃ = ∪r

i=1s̃i and the corresponding matrix of signal
probabilities Q̃ with elements q̃s̃k ≡ q(s̃|k) for s̃ = 1, · · · , r, k = 1, · · · , K. Thus
S̃ contains the same independent information as S. This construction motivates the
following definition.

Definition 3. Signals are non-redundant if r = S.

When signals are non-redundant we necessarily have S ≤ K since S = r ≤
min(K, S).

Assumption 1. Signals are bounded, informative, and non-redundant.

The assumption that signals are bounded is not needed for our convergence
results but is made to rule out trivial cases where some signals are fully revealing.6

2.2 Payoffs

Individual payoffs have two components, a private-value component and a common-
value component. The latter depends on the action taken by the agent and the
state of the world. If agent t’s action is a and the state of the world is k, the
common-value component is given by Πak, where Π is the common-value payoff
matrix. Without loss of generality we choose units such that 0 < Πak < 1 for all
a ∈ A and k ∈ K. Furthermore, we say that Π is admissible if

∑K
k=1 xk = 0 and∑K

k=1(Πak − Πa′k)xk = 0 for all a �= a′ ∈ A imply xk = 0 for all k ∈ K.

Assumption 2. Π is admissible with elements strictly between 0 and 1.

Note that admissibility requires that the gain (or loss) from switching from ac-
tion a to a′ varies across states. In particular, all columns of Π have to be distinct, i.e.
states are (common-value) payoff-distinguishable. Admissibility holds generically
only when there are at least as many actions as states; we explore the implications
of relaxing Assumption 2 in Section 7.2.

Private-value components for agent t are assigned by nature as draws from a
commonly known distribution of action-specific payoff disturbances. We assume
the distribution of these A private values for agent t has a joint density, denoted
by f t(vt) = f t(vt

1, · · · , vt
A) with corresponding distribution function F t(vt). Let

supp(f t) denote the (closure of the) set of points where f t(·) is strictly positive.
We assume the vt’s are all independent of each other.

Assumption 3. supp(f t) ⊇ [0, 1]A.

By choosing action a ∈ A, agent t receives a private value vt
a. Hence, in state

k, agent t’s payoff of choosing action a is

ut(a|vt, k) = vt
a + Πak. (2.1)

6 The case of unbounded signals is somewhat more complicated with a continuous signal space. See
Smith and Sorensen (2000).
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Summarizing the informational setup, each agent t has a multidimensional type,
θt ∈ Θt, consisting of A private-value components and a single common-value
signal. The prior state probabilities, P 0, the conditional signal distributions, Q,
the joint distribution of private values, F , and the common-value payoff matrix,
Π , are assumed to be common knowledge among the agents. Moreover, agent
t observes the ordered sequence of action choices of all her predecessors, ht =
{a1, · · · , at−1} ∈ Ht, but not their types. Agent t’s strategy is a mapping from
Ht × Θt into the A-dimensional probability simplex, specifying for every history
ht ∈ Ht and every type realization θt ∈ Θt, the probabilities with which each
action is chosen.

3 Public and private beliefs

From the definition of payoffs, it is clear that agent t cares about the his-
tory only to the extent that it is informative about the state of the world. Let
P t

k ≡ Prob(k|ht) denote the public belief that the state is k given the history
of choices ht = {a1, · · · , at−1}. Since H1 = ∅, public beliefs in period 1 coincide
with prior beliefs: P 1

k = P 0
k > 0 for all k. The analysis below is greatly simplified

by the observation that, for any given strategy profile, public beliefs in period t+1
are completely determined by agent t’s choice and public beliefs in period t. In
other words, the public belief P t

k serves as a sufficient statistic for the history of
choices, ht.

After observing her private signal st, agent t updates her private belief that the
state is k from P t

k to pt
k(st|P t) ≡ Prob(k|P t, st). Bayes’ rule implies

pt
k(st|P t) =

qstkP t
k∑K

k′=1 qstk′P t
k′

. (3.1)

4 Optimal choice behavior: cutpoints

Agent t’s optimal action is a if it yields the highest expected payoff, i.e. if for all
a′ �= a

vt
a +

K∑
k=1

Πak pt
k(st|P t) > vt

a′ +
K∑

k=1

Πa′k pt
k(st|P t).

To derive agent t’s choice probabilities, we define for each signal st and each pair
of actions, a, a′ ∈ A the cutpoint v̄t

a,a′(st|P t):7

v̄t
a,a′(st|P t) ≡

K∑
k=1

(Πa′k − Πak) pt
k(st|P t). (4.1)

7 Note that v̄t
a,a(st|P t) = 0, v̄t

a,a′ (st|P t) = −v̄t
a′,a(st|P t), and v̄t

a,a′ (st|P t) +
v̄t

a′,a′′ (st|P t) = v̄t
a,a′′ (st|P t) for all a, a′, a′′ ∈ A.
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Therefore, agent t’s optimal action is a if and only if the difference between
t’s private value disturbances for a and any other action a′ exceeds the cutpoint
defined by (4.1). Hence, conditional on public beliefs at t, P t, and private signal
st, agent t’s choice probabilities are given by:

Ct
a(st|P t) ≡ Prob(a|P t, st) =

∫
va=maxa′∈A(va′+v̄t

a,a′ (st|P t))
dF t(v), (4.2)

for each a ∈ A. We first establish that, under Assumptions 2 and 3, all actions have
a positive chance of being selected.

Lemma 1. The choice probabilities Ct
a(st|P t) are strictly positive and strictly

decreasing in the cutpoints v̄t
a,a′(st|P t) for all a′ �= a ∈ A and st ∈ S.

Proof. See Appendix.

5 Convergence

Here we investigate the evolution of agents’ beliefs and corresponding choices. We
define state-dependent transition probabilities T t

ka(P t) ≡ Prob(a|P t, k) for k ∈ K
and a ∈ A, which are the probabilities of observing action a when the state is k,
given the history ht. Note that

T t
ka(P t) =

S∑
s=1

qsk Ct
a(s|P t), (5.1)

and
∑A

a=1 T t
ka(P t) = 1. Furthermore, let P t+1

k (a) ≡ Prob(k|P t, a) denote the
updated public belief that the state is state k if agent t chooses action a following
history ht. By Bayes’ rule

P t+1
k (a) =

T t
ka(P t)P t

k∑K
k′=1 T t

k′a(P t)P t
k′

. (5.2)

We next establish that no alternative is ruled out in finite time.

Lemma 2. P t
k > 0 for all k ∈ K and t ∈ T .

Proof. See Appendix.

Since all actions have a strictly positive chance of being chosen (Lemma 1), if,
for some t, P t+1

k (a) = P t
k, for all k ∈ K, a ∈ A, then P τ

k (a) = P t
k, for all k ∈ K,

a ∈ A and for all τ > t. If this happens, then we say the process of learning stops
at time t.

Definition 4. Learning stops at t if and only if P t+1
k (a) = P t

k, for all k ∈ K,
a ∈ A.

Since P t
k > 0 by Lemma 2, Eq. (5.2) implies that learning stops if and only if

T t
ka(P t) =

∑K
k′=1 T t

k′a(P t)P t
k′ , for all k ∈ K, a ∈ A, which in turn holds if and

only if:

T t
ka(P t) = T t

1a(P t), ∀ k ∈ K, a ∈ A. (5.3)
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The next three lemmas establish that as long as beliefs are non-degenerate, learning
does not stop. Together with Lemma 2 this implies that learning does not stop in
finite time. To prove this we show an intermediate result that learning never stops
unless, for some public belief P t

k, choice probabilities are the same regardless of
the signal observed by agent t.

Definition 5. Choice probabilities are independent of signals at P t if and only if
Ct

a(s|P t) = Ct
a(s′|P t) for all s, s′ ∈ S and for all a ∈ A.

Lemma 3. Learning stops at t if and only if choice probabilities are independent
of signals at P t.

Proof. (Only if) Using (5.1) condition (5.3) can be rewritten as

S∑
s=1

Ct
a(s|P t)(qsk − qs1) = 0, ∀ k ∈ K, a ∈ A.

The S-dimensional vector e = (1, 1, · · · , 1) is a null (left) eigenvector of the matrix
Q1 = qsk − qs1, with k �= 1 and s = 1, · · · , S. Assumption 1 implies that Q1 has
rank at least S−1, so e is the unique null eigenvector. Hence Ct

a(s|P t) = Ct
a(s′|P t)

for all s, s′ ∈ S and for all a ∈ A.
(If) Suppose at P t choice probabilities are independent of signals, so

Ct
a(s|P t) = Ct

a(s′|P t) = C̄ for all s, s′ ∈ S and for all a ∈ A. Then T t
ka = C̄ for

all k ∈ K and substituting into (5.2) gives P t+1
k (a) = P t

k for all k ∈ K and a ∈ A,
so learning stops at t. 	


Definition 6. Cutpoints are independent of signals if and only if v̄t
a,a′(s|P t) =

v̄t
a,a′(s′|P t) for all s, s′ ∈ S and for all a �= a′ ∈ A.

Lemma 4. Choice probabilities are independent of signals at P t if and only if
cutpoints are independent of signals.

Proof. Here we illustrate the proof for the specific case A = K = 3 and S = 2.
The proof for the general case can be found in the Appendix.

(Only if) Suppose, in contradiction, cutpoints are not independent of signals:
v̄t
1,2(1|P t) > v̄t

1,2(2|P t). By Lemma 1, Ct
1(1|P t) = Ct

1(2|P t) then implies
v̄t
1,3(1|P t) < v̄t

1,3(2|P t). Since v̄t
2,3(s|P t) = v̄t

1,3(s
t|P t) − v̄t

1,2(s|P t) for all
s we have v̄t

2,3(1|P t) < v̄t
2,3(2|P t). Furthermore, since v̄t

2,1(s|P t) = −v̄t
1,2(s|P t)

for all s we have v̄t
2,1(1|P t) < v̄t

2,1(2|P t). But recall from Lemma 1 that choice
probabilities are strictly decreasing in cutpoints, so Ct

2(1|P t) > Ct
2(2|P t), the

desired contradiction. A similar reasoning rules out v̄t
1,2(1|P t) < v̄t

1,2(2|P t), so
v̄t
1,2(1|P t) = v̄t

1,2(2|P t). Finally, applying the same steps shows v̄t
1,3(1|P t) =

v̄t
1,3(2|P t) and v̄t

2,3(1|P t) = v̄t
2,3(2|P t).

(If) Suppose cut-point are independent of signals. Then by (4.2), the choice
probabilities are independent of signals. 	


Definition 7. Public beliefs are degenerate at t if P t
k = 1 for some k.

Lemma 5. Cutpoints are independent of signals if and only if public beliefs are
degenerate.
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Proof. (Only if) Independence of cutpoints with respect to signals implies:

K∑
k=1

(Πa′k − Πak)pt
k(s|P t) =

K∑
k=1

(Πa′k−Πak)pt
k(s′|P t), ∀ a, a′ ∈ A, s, s′ ∈ S,

or, equivalently,

K∑
k=1

(Πa′k − Πak) (pt
k(s|P t) − pt

k(s′|P t)) = 0, ∀ a, a′ ∈ A, s, s′ ∈ S.

Since
∑K

k=1(p
t
k(s|P t) − pt

k(s′|P t)) = 0, Assumption 2 implies that pt
k(s|P t) =

pt
k(s′|P t) for all k ∈ K and s, s′ ∈ S so pt

k(s|P t) = P t for all k ∈ K and s ∈ S.
Using (3.1) this can be written as

P t
kqsk = P t

k

K∑
k′=1

qsk′P t
k′ . ∀ k ∈ K, s ∈ S. (5.4)

Let Ω ⊆ K denote the set of states for which the public belief is strictly positive,
i.e. P t

k > 0 for all k ∈ Ω. From (5.4) we conclude that qsk is the same for all s ∈ S
and all k ∈ Ω, which violates the informative signal assumption unless Ω contains
only a single element.

(If) Suppose public beliefs are degenerate, then private beliefs, and hence cut-
points, are independent of signals. 	


Theorem 1. Learning stops if and only if public beliefs are degenerate.

Proof. Immediate from Lemmas 3 through 5. 	


We next show that the learning process in fact converges, and that, in the limit,
the public beliefs put all mass on the true state k. In what follows we assume, without
loss of generality, that the true state is k = 1. We define the (public) likelihood
ratio against the true state �t

1 ≡ (1 − P t
1)/P t

1 .

Lemma 6. The likelihood ratio �t
1 defines a martingale process conditional on

state 1.

Proof. Define �t
1(a) = −1 + 1/P t

1(a) for a ∈ A. Conditional on k = 1, the
transition probabilities are given by T t

1a(P t) so

E(�t+1
1 |�t

1, k = 1) =
A∑

a=1

T t
1a(P t)�t

1(a) =
A∑

a=1

T t
1a(P t)

(
1

P t
1(a)

− 1
)

. (5.5)

Using (5.2) condition (5.5) can be worked out as

E(�t+1
1 |�t

1, k = 1) = −1 +
K∑

k=1

A∑
a=1

T t
ka(P t)P t

k

P t
1

= −1 +
1
P t

1
= �t

1. (5.6)

Hence, �t
1 defines a martingale conditional on k = 1. 	
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By the Martingale Convergence Theorem (Doob, 1953) there exists a limit
random variable to which �t

1 converges almost surely. Hence, P t
1 = (�t

1 +1)−1 also
converges almost surely to a limit random variable. We are now in position to state
our main result.

Theorem 2. Under Assumptions 1–3, public beliefs converge to the correct state
almost surely.

A brief sketch of the proof follows (see the Appendix for details). By Fatou’s
lemma the martingale property implies limt→∞ E(�t

1) ≤ E(�01) = �01. By assump-
tion P 0

1 �= 0, so �01 is finite. Hence limt→∞ E(�t
1) is finite, which implies that

public beliefs cannot converge to an incorrect state. By Theorem 1, public beliefs
also cannot converge to a non-degenerate distribution over states, so they must
converge to the true state with probability one.

6 Dynamics

The martingale property of the conditional likelihood ratio against the true state
implies that the belief for the true state obeys a sub-martingale. In other words, the
expected change in beliefs for the true state is always non-negative.

Lemma 7. The public belief P t
1 defines a sub-martingale process conditional on

state 1.

Proof. Since P t+1
1 (a) = (�t+1

1 (a) + 1)−1 for all a ∈ A, the public belief is a
strictly convex transformation of the likelihood ratio against the true state. Hence

E(P t+1
1 |P t

1 , k = 1) =
A∑

a=1

T t
1a(P t)P t+1

1 (a) =
A∑

a=1

T t
1a(P t)(�t+1

1 (a) + 1)−1

≥
(

A∑
a=1

T t
1a(P t)(�t+1

1 (a) + 1)

)−1

= (�t+1
1 + 1)−1 = P t

1 , (6.1)

applying Jensen’s inequality and Lemma 6 in the last line. 	


Thus the public beliefs converge to the true state almost surely (Theorem 2) and
they always increase in expectation. Together these results may seem to suggest
that the belief process tends to follow a monotone dynamic, converging smoothly
to the correct beliefs from any non-degenerate prior. However, this is generally not
the case. That is, there is a wide range of possible paths that beliefs may follow,
many of which are non-monotonic and exhibit sudden jumps.

To illustrate this point, consider the following example where A = S = K = 2.
We can define the signal technology and private value distributions such that, with
high probability, beliefs initially tend towards the incorrect state. Specifically, the
information structure is given by P 0

1 = 1
2 , q1,1 = 4

5 , and q2,2 = 19
20 . Let the

common-value payoff matrix be the identity matrix, i.e. Π1,1 = Π2,2 = 1 and
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Figure 1. The asymmetry in private valuations causes most choices to be for alternative 2 (right panel).
The few choices for alternative 1, however, are sufficient to eventually tilt beliefs to the correct alternative
(left panel)
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Figure 2. Prior beliefs favor state 3, then shift suddenly to 2, finally shifting and converging to state 1
(left panel). Initial choices are for 3 but after a spurt of 2 choices, choice frequencies are roughly equal
for 2 and 3 (right panel)

Π1,2 = Π2,1 = 0, and the private values be normally distributed with the same
variance but different means: vt

1 ∼ N(−1.25, .4) and vt
2 ∼ N(0, .4). In this case,

66% of all individuals choose action 2 even when they believe the true state is 1.
In other words, no matter how strong the evidence for state 1, a majority of agents
will nevertheless choose action 2 for idiosyncratic reasons.

An important feature of the dynamics in this example is that the change in
posterior beliefs after observing either choice is highly asymmetric. Specifically,
after observing a choice for 2, the evidence for 2 is only slightly stronger, since
successors rationally realize that the decision was likely driven by private value
considerations, and not by information regarding the common value. Thus even
after observing many choices for 2, the effective sample of “2 signals” inferred
from the history is comparatively small. In contrast, after a choice for 1 is observed,
the evidence for 1 increases substantially since agents know that it is unlikely that
the choice was based on idiosyncratic tastes; instead, it is very likely that st = 1.
This situation is illustrated in Figure 1, which presents a simulation of ten trials of
250 periods each using the above specifications. The belief for state 1 is plotted in
the left panel and the corresponding cumulative choice frequencies for alternative 1
in the right panel. Note that many of the belief paths are non-monotonic and exhibit
sudden shifts to the correct state following a choice for alternative 1. This example
demonstrates that individuals are capable of learning the true state even when few
of them actually choose it, as can be seen in the right hand panel of Figure 1, where
the cumulative frequencies for alternative 1 are all less than 34%.
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When we consider more general settings, where there are several states and
alternatives, it is in fact not necessary that some individuals choose the superior
alternative in order for learning to converge to the correct beliefs. Consider the
following situation where A = S = K = 3. As before, prior beliefs are uniform,
but the signal technology is now given by

Q =




0.7 0.15 0.1

0.2 0.7 0.2

0.1 0.15 0.7


 .

The common-value payoff matrix is again given by the identity matrix: Π = I , so
that actions correspond directly to states. Private values are drawn independently
across alternatives with Fa(vt

a) = (1 + exp(−λ(vt
a + µa)))−1 where µ1 = 2,

µ2 = µ3 = 0, and the scale parameter is λ = 5. Thus the distribution of private
values for the true state 1 is shifted down by 2 units and with a high value of λ it is
very unlikely that individuals ever choose action 1. Instead there will be only choices
for alternatives 2 and 3. However, from the frequencies of these choices, individuals
learn the relative frequencies with which signals for alternatives 2 and 3 are received.
Since these relative frequencies differ across all three states, individuals still are
able to learn that the true state is k = 1.

Figure 2 depicts a simulation of public beliefs (left panel) along with a moving
average of corresponding choice frequencies (right panel) for 500 periods, where
green denotes the true state 1, blue denotes 2, and red corresponds to 3. Prior
beliefs put mass 90% on state 3, with the remaining 10% split equally between
states 1 and 2. The right panel shows that the first 100 choices or so are for 3, so
that beliefs for state 3 increase from the initial prior. But once some individuals
draw high private valuations for alternative 2, they break the would-be herd and
beliefs shift very quickly to state 2. However, the continuing presence of choices
for alternative 3 causes beliefs to eventually converge upon state 1, even though
no single 1-choice is made. Note that after beliefs have (almost) converged, choice
frequencies are approximately 50% for alternatives 2 and 3, since conditional on
state 1, the common value payoff from each of these alternatives are the same (zero)
and the private values are identically distributed . Thus while beliefs converge upon
the true state, a herd never arises.

7 Extensions

In this section we explore the consequences of relaxing some key assumptions
of the model presented in Section 2. We first discuss how the iid assumption of
private valuations can be relaxed. We also show why the assumption of full support
is essential for complete learning. Second we turn to the common-value payoffs,
and show through an example the role of admissibility. We sketch a proof that
complete learning still holds generically when the admissibility condition is not
met. Finally we discuss several variations of the model that incorporate boundedly
rational behavior, and show that the convergence result is robust to these changes.
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7.1 Private valuations

We first discuss two ways in which one can relax the assumptions on how agents
receive their private values for the various alternatives in A.

7.1.1 Private values: full support

Recall the full support Assumption 3, which requires the support of private values
for each alternative to contain the unit interval. In order to connect our results to
previous findings, we shall be mainly interested in the alternative case of a finite
number of private values, which of course violates the full support condition. Our
main finding is that without full support, beliefs fail to converge upon the true
state. However, even in the absence of complete learning, it is never possible for
inferences to cause beliefs to converge to an incorrect state (see Smith and Sorensen,
2000).8

Lemma 8. For any distribution F (·), if P 0
1 > 0, then beliefs a.s. cannot converge

to an incorrect state.

We next discuss two examples of private-value distributions for which “patho-
logical outcomes” arise, i.e. for which learning is incomplete. First, consider
the case where the distribution of private values has a single mass point at
vt = (0, . . . , 0), so that choices are driven purely by the common-value com-
ponent. This case generalizes the basic model discussed in Bikhchandani et al.
(1992).9 With bounded signals there always exist choice histories where the result-
ing public beliefs are strong enough to outweigh any private information, creating
an informational cascade. The set of beliefs at which a cascade occurs, i.e. the cas-
cade set,10 is a connected set containing the boundaries of the beliefs simplex, and
has open interior. An example for the case of two states is given in the left panel
of Figure 3 where the expected change in public beliefs is shown for all possible
values of the public belief.11 For the case of two states it can be shown that learning
stops (i.e. condition (5.3)) if and only if the expected change in beliefs is zero,
and whenever beliefs are not in a cascade set the expected change to the true state
is strictly positive. As t becomes large, public beliefs eventually enter one of the
cascade sets with probability one, after which learning stops.

8 This result is again a direct consequence of the martingale property of the likelihood ratio (since
it holds for any distribution of values) and Fatou’s Lemma, since if beliefs were to converge upon an
incorrect state, the likelihood ratio against the true state would explode. Note that even in such cases,
however, beliefs must still converge by the Martingale Convergence Theorem, and since it is not possible
for beliefs to converge upon any incorrect state, beliefs must settle upon some non-degenerate point that
places mass on multiple states.

9 We allow for asymmetries in the signal technology and common value payoffs which BHW do not
explicitly consider.

10 We follow Smith and Sorensen (2000) in using this term.
11 The cascade sets are the regions where the expected change in beliefs vanish. In each panel,

A = S = K = 2, q1,1 = q2,2 = 3
5 , and common values are given by the identity matrix. Private

value distributions are given by a single mass point at vt = (0, 0) (upper left), mass points with equal
weight at vt ∈ {(− 4

3 , 0), (− 2
3 , 0), (0, 0), ( 2

3 , 0), ( 4
3 , 0)} (upper right), the uniform distribution on

[− 4
3 , 4

3 ] (lower left), and the uniform distribution on [− 2
3 , 2

3 ] (lower right).
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Figure 3. Expected change in beliefs E(P t+1
1 −P t

1 |P t
1) as a function of P t

1 for the case of two possible
states and no private values (upper left panel), a finite number of private values (upper right), continuous
private values with full support (lower left), and continuous values without full support (lower right)

Next consider the case of multiple mass points in the unit square. As in the case
of a single mass point, the probability of eventually reaching an interior belief at
which a cascade occurs is one. The principle difference arising from introducing
more private values to the support is that the cascade set has more regions. In
general, with finite support, the cascade set will consist of the union of a finite
collection of separated regions (see the upper right panel of Fig. 3). Which region
beliefs eventually settle into depends on prior beliefs and the specific history of
signals and choices.

The intuition behind the failure of complete learning in the above examples
may be generalized in a straightforward manner.

Lemma 9. Beliefs a.s. cannot converge to the correct state if F (·) has finite support.

To understand this result note that when the support of F (·) is finite, its graph
will be a step function with “flat” regions almost everywhere. The expression for the
choice probabilities in (4.2) reduces to a finite sum, which is invariant with respect
to small changes in the cutpoints v̄t

a,a′(st|P t). Now suppose public beliefs P t

converge to a degenerate point. Then private beliefs pt(st|P t) must also converge
to the same point following any signal st, which is a direct consequence of Bayes’
Law. Thus the difference pt(s|P t) − pt(s′|P t) is small for any pair of signals
s, s′ ∈ S, which in turn implies that the cutpoints in (4.1) are nearly independent of
signals when beliefs are close to degenerate. Hence, choice probabilities become



Social learning with private and common values 259

invariant with respect to signals and choices no longer reveal any privately held
information. The fact that learning must then stop follows directly from Lemma 3.

In contrast, with a continuum of types and full support, the process of social
learning never stops (see the lower left panel of Fig. 3) and thus necessarily reveals
the true state. With a continuum of types and incomplete support it is possible to
get into a cascade. The lower right panel in Figure 3 illustrates this when private
values are uniform on [− 2

3 , 2
3 ] and the common-value payoff matrix is the identity.

7.1.2 Private values: independence across agents

We have assumed that private values are distributed independently across agents.
Thus while we allowed for correlation across alternatives for each agent, we ruled
out any correlation in private values across agents. This is in fact not necessary for
our results.

Relaxing independence of private values across agents presents a more complex
argument, but we believe our results are also robust to this change. Suppose there
was some positive correlation in private values across agents. Then after observing
an action at all agents revise their beliefs in such a way that they believe the
subsequent agent is more likely to have a high value of vt+1

a . So if agent t+1 chooses
a also, then beliefs on the state are updated less than in the case of independence.
This illustrates that correlation may affect the rate of convergence, but should not
change the limit results.

7.2 Common value payoffs: admissibility

Recall the definition of admissibility required by Assumption 2. Without this as-
sumption, our results hold generically, but not universally. To see this, first note that
admissibility implies A≥K. Consider the following example where A = S = 2
and K = 3, so admissibility is violated. Let common values and signals be given
by

Π =




1 0 1

0 1
1
2


 , Q =




6
18

8
18

13
18

12
18

10
18

5
18


 .

If public beliefs ever reach P t = ( 1
3 , 1

3 , 1
3 ), for instance, then learning stops in the

sense of Definition 4; i.e., P t+1
k (a) = P t

k = 1
3 for each action a = 1, 2 and each

state k = 1, 2, 3. To see this, consider the cut-points v̄21(s|P t), which, for s = 1,
equals 1( 2

9 ) − 1( 8
27 ) + 1

2 ( 13
27 ) = 1

6 , and for s = 2, equals 1( 4
9 ) − 1( 10

27 ) + 1
2 ( 5

27 ) =
1
6 . Since the cut-points are independent of signals, Lemma 4 shows that choice
probabilities are also invariant to signals. The intuition is that the cut-points measure
the marginal amount of idiosyncratic utility required to make a particular action
better than another. When these values are constant across signals, then so are
choice probabilities. This implies that if initial beliefs are P 0 = ( 1

3 , 1
3 , 1

3 ), agents
can never learn anything about the true state by observing the actions of others.
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1

2 3

Figure 4. The belief simplex over states for the example of non-admissible payoffs. The union of the
dark curve and the upper vertex is the set of absorbing beliefs at which learning stops

However, beliefs can be perturbed slightly from ( 1
3 , 1

3 , 1
3 ) such that learning will

continue. Indeed, the set of beliefs from which learning continues to the limit is
open and dense (and has full Lebesgue measure) in the belief simplex.

This is illustrated for the example in Figure 4, which displays the simplex of
beliefs over the three states. The upper vertex corresponds to beliefs concentrated
on state 1, the lower left vertex state 2, and the lower right vertex state 3. The cascade
set where learning stops is the dark curve connecting the lower two vertices, passing
through P t = ( 1

3 , 1
3 , 1

3 ).12

More generally, for any common value matrix Π with distinct columns and
any non-redundant signal distribution matrix Q, the set of beliefs at which learning
stops is at most a lower-dimensional subset of the K-simplex. The same is true for
the “pre-image” of such a public belief vector P t under the belief updating process.
Working backwards from t to initial beliefs P 0 in an inductive fashion, the set of
initial beliefs that could potentially lead to beliefs P t in finite time is a countable
union of sets of measure zero, and so is itself a set of measure zero.

Thus quite generally the set of prior beliefs P 0 from which learning could
stop at a non-degenerate outcome has measure zero, and our convergence result in
Theorem 2 holds generically in this sense. When admissibility is satisfied, however,
we get the stronger universal convergence result, where all priors necessarily lead to
fully correct learning in the limit. Furthermore, in the case A ≥ K, Π satisfies the
admissibility condition generically, so that almost all common-value technologies
are admissible.

An exceptional case arises if Π contains several columns that differ only by a
constant,13 and full learning will generally not occur in this case. We conjecture,
but have not proven, the following result: Let Π = (π1, . . . , πK), where each πk

is an A-dimensional column vector of payoffs in state k. Let K̄ ⊂ K be a set of
states for which πk = πk′ + ckk′ for all k, k′ ∈ K̄ and some constant ckk′ , and
such that all πk ∈ K \ K̄ can not be written as additive shifts of each other or
the elements of K̄. If the true state is an element of K̄, then we conjecture that
generically beliefs converge to a point that puts mass one on K̄. If the true state is
not in K̄, we conjecture the convergence result converges obtains as above.

12 The upper vertex is also an absorbing belief and is marked as a separate point.
13 The constant could of course be zero, in which case these columns of Π would be identical.
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7.3 Relaxing full rationality

A natural question to ask is to what extent the convergence results rely on perfectly
rational Bayesian decision-making.We consider three possibilities: errors in beliefs,
errors in recording or monitoring, and decision errors.14 In all three extensions, full
learning still obtains.

Errors in belief updating are modelled as in Kahneman and Tversky (1973),
which presented experimental evidence that some individuals will overweight their
private signal relative to the prior, a judgement bias that has become known as base
rate neglect. All of the information aggregation results of the previous sections con-
tinue to hold even in the presence of this fallacy (or the opposite, under-weighting).
Of additional interest is the fact that the learning process is actually faster as agents’
behavior reflects base rate neglect. See Goeree et al. (2004) for details.

The second type of irrational behavior we consider is that agents sometimes
“tremble” and accidentally choose the wrong alternative with some probability
(which may vary over time). Alternatively, one could suppose there is imperfect
monitoring, and agents’ choices are observed with error. This addition to the model
does not change the results.

The third type of irrational behavior is that these trembles are payoff related.
That is, agents are better at avoiding high cost errors than low cost errors. This is the
idea behind quantal response equilibrium (McKelvey and Palfrey, 1995, 1998). In a
quantal response equilibrium with payoff responsive errors, the convergence result
holds even in the pure common values case. The reason is that quantal response
equilibrium with payoff-responsive errors corresponds to the Bayesian equilibrium
of the basic model with private values disturbances.

8 Conclusion

In this paper we establish some general conditions for positive results about conver-
gence of beliefs in social learning models when beliefs are bounded and preferences
have both a common value and a private value component. Under weak assump-
tions on the information structure and preferences, neither herds nor cascades occur.
Learning does not stop in finite time, and as a result information is fully aggregated
in the limit. Observed behavior is asymptotically fully revealing in the sense that the
public beliefs about the state converge to a degenerate random variable concentrated
on the true state.

The main reason for the difference between these new results and past negative
results is the presence of the private value components. With two states, the key
assumptions required are that signals are informative and that the support of the
distribution of private values is sufficiently rich. If signals were not informative,
then full revelation of the state could not possibly occur, even if signals were public.
If the distribution of private values were not sufficiently rich, then at some point
learning could stop, because cut-points for optimal decision rules reach a boundary
(or gap) in the support, so that choices are not informative of signals.

14 See Goeree, Palfrey, Rogers, and McKelvey (2004) for a parametric analysis of non-Bayesian
models using experimental data.
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With more than two states, it is more complicated. Information aggregation can
fail unless the common value payoff matrix satisfies a spanning condition. This
condition, called admissibility, is generically satisfied if the number of actions is at
least as great as the number of states, but fails otherwise. The example in Section 7.2
shows why this information aggregation failure can arise for inadmissible common
value payoffs. We conjecture, however, that a generic version of our main theorem
holds even if admissibility is not satisfied, i.e. complete convergence will obtain
for almost all prior beliefs.

Intuition suggests that our result could be extended to allow for much more
general joint distributions of signals and private values, which could include some
positive or negative correlation, provided the joint distribution satisfies an absolute
continuity condition.While the actual proof technique we employ does not extend in
a direct way to such environments, we conjecture that our limit result will continue
to hold quite generally as long as signals are informative, and the distribution of
idiosyncratic payoffs satisfies a condition of “observationally full support,” i.e. for
any action and any set of beliefs there exist private shocks for which that action
would be optimal.

A Appendix

Proof of Lemma 1. Since elements of Π lie strictly between 0 and 1, the cutpoints
v̄t

a,a′(st|P t) lie strictly between −1 and 1 for all a, a′ ∈ A. Hence, byAssumption 3,
for each a ∈ A there is a set I(a) ⊆ supp(f) of positive measure such that if
va ∈ I(a) then va − v̄t

a,a′(st|P t) > 0 for all a′ �= a ∈ A. Hence, Ct
a(st|P t) > 0.

Moreover, the cumulative distribution F (·) is strictly increasing in all its arguments
on I(a), so choice probabilities are strictly decreasing in cutpoints. 	

Proof of Lemma 2. The proof is by induction. Recall that P 1

k = P 0
k > 0 for all

k ∈ K, by assumption. Lemma 1 ensures C1
a(s1|P t) > 0 for all a ∈ A and s1 ∈ S,

so T 1
ka(P t) > 0 for all k ∈ K and a ∈ A and (5.2) yields P 1

k (a) > 0 for all k ∈ K
and a ∈ A, so P 2

k > 0 for all k ∈ K. By a similar argument, for t > 1, P t
k > 0 for

all k ∈ K implies P t+1
k > 0 for all k ∈ K. 	


Proof of Lemma 4. First consider the case A > 3. Suppose v̄t
a,a′(s|P t) >

v̄t
a,a′(s′|P t) for some actions a �= a′ and some signals s �= s′ (if no such cut-

points exist we are done). Relabel actions such that action a becomes action 1 and
action a′ becomes action 2. Lemma 1 and Ct

1(s|P t) = Ct
1(s

′|P t) together imply
that v̄t

1,a′′(s|P t) < v̄t
1,a′′(s′|P t) for some a′′ > 2. Again relabel actions such that

a′′ = 3. So we have:

v̄t
1,2(s|P t) > v̄t

1,2(s
′|P t), v̄t

1,3(s|P t) < v̄t
1,3(s

′|P t). (A.1)

From this we derive constraints on other cutpoints by an induction argument.

Claim: If{
(−1)av̄t

a,a′(s|P t) < (−1)av̄t
a,a′(s′|P t)

(−1)av̄t
a,a+2(s|P t) > (−1)av̄t

a,a+2(s
′|P t)

for a < a∗, a′ ≤ a + 1, a′ �= a
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for 2 ≤ a∗ ≤ A − 2, then:{
(−1)av̄t

a,a′(s|P t) < (−1)av̄t
a,a′(s′|P t)

(−1)av̄t
a,a+2(s|P t) > (−1)av̄t

a,a+2(s
′|P t)

for a ≤ a∗, a′ ≤ a + 1, a′ �= a

(A.2)

for 2 ≤ a∗ ≤ A − 2.
The result is trivial for a < a∗ so the only cases to consider are a = a∗ and
a′ ≤ a∗ + 1, a′ �= a∗. To show the result for a = a∗ and a′ = a∗ + 1 note that

(−1)a∗
v̄t

a∗,a∗+1(s|P t)=(−1)a∗−1(v̄t
a∗−1,a∗(s|P t) − v̄t

a∗−1,a∗+1(s|P t))

<(−1)a∗−1(v̄t
a∗−1,a∗(s′|P t) − v̄t

a∗−1,a∗+1(s
′|P t))

=(−1)a∗
v̄t

a∗,a∗+1(s
′|P t), (A.3)

where the inequality follows from the induction hypothesis. For a = a∗ and a′ =
a∗ − 1

(−1)a∗
v̄t

a∗,a∗−1(s|P t) = (−1)a∗−1v̄t
a∗−1,a∗(s|P t)

< (−1)a∗−1v̄t
a∗−1,a∗(s′|P t)

= (−1)a∗
v̄t

a∗,a∗−1(s
′|P t). (A.4)

Finally, the proof for a = a∗ and a′ < a∗ − 1 follows since

(−1)a∗
v̄t

a∗,a′(s|P t)=(−1)a∗−2(v̄t
a∗−2,a′(s|P t) − v̄t

a∗−2,a∗(s|P t))

<(−1)a∗−2(v̄t
a∗−2,a′(s′|P t) − v̄t

a∗−2,a∗(s′|P t))

= (−1)a∗
v̄t

a∗,a′(s′|P t). (A.5)

This proves the top line of (A.2). Lemma 1 together with Ct
a∗(s|P t) = Ct

a∗(s′|P t)
then implies (−1)a∗

v̄t
a∗,a′′(s|P t) > (−1)a∗

v̄t
a∗,a′′(s′|P t) for some a′′ > a∗ + 1.

We can relabel states such that a′′ = a∗ +2, which proves the bottom line of (A.2),
thus verifying the claim.

Inequalities (A.1) together with the claim imply that (A.2) holds for all 2 ≤
a∗ ≤ A − 2. Furthermore, by repeating steps (A.3), (A.4), and (A.5) for the case
a∗ = A − 1 we can conclude:

(−1)A−1v̄t
A−1,a(s|P t) < (−1)A−1v̄t

A−1,a(s′|P t) for a ≤ A, a �= A − 1.

(A.6)

Before finishing the proof of the claim we extend (A.6) to the cases A = 2 and
A = 3. For A = 2, condition (A.6) simply states that the single cut-point v̄t

1,2 differs
for the two possible signals. For A = 3, condition (A.6) can be derived from (A.1).
Recall that v̄t

2,1(s|P t) = −v̄t
1,2(s|P t) and v̄t

2,3(s|P t) = v̄t
2,1(s|P t) + v̄t

1,3(s|P t)
for all signals s, so (A.1) implies v̄t

2,1(s|P t) < v̄t
1,2(s

′|P t) and v̄t
2,3(s|P t) <

v̄t
2,3(s

′|P t). Hence (A.6) holds for all A ≥ 2.
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The desired contradiction now follows as Lemma 1 implies that Ct
A−1(s|P t) �=

Ct
A−1(s

′|P t) since for all a �= A − 1 the cutpoints v̄t
A−1,a(s|P t) are greater

(less) than v̄t
A−1,a(s′|P t) when A is even (odd) while v̄t

A−1,A−1(s|P t) =
v̄t

A−1,A−1(s
′|P t) = 0. To summarize, independence of choice probabilities with

respect to signals implies that v̄t
a,a′(s|P t) = v̄t

a,a′(s′|P t) for all a, a′ ∈ A and
s, s′ ∈ S.

Finally the reverse implication is clear from (4.2). 	


Proof of Theorem 2. Lemma 6 shows that �t
1 is a martingale. By the Martingale

Convergence Theorem (see Doob, 1953), there exists a limit random variable to
which �t

1 converges almost surely. Since �t
1 satisfies the martingale property, Fatou’s

lemma implies limt→∞ E(�t
1) ≤ E(�01) = �01, which is finite by assumption. Thus it

is impossible for beliefs to converge upon an incorrect state with positive probability,
as this would imply an infinite likelihood ratio against the true state. Smith and
Sorenson (2000, Theorems B.1 and B.2, p. 393) show that any public belief �∗ to
which the belief process may converge with positive probability must also be a
fixed point of the learning process in the sense that �t = �∗ implies �t+1 = �∗. The
reason is that if �t → �∗ then since the updating process is continuous in beliefs, if �∗

were not a fixed point of the learning process then almost surely beliefs eventually
become bounded away from �∗, contradicting the assumption that it is a limit point
with positive probability. Theorem 1 establishes that the only possible such fixed
points occur where beliefs are degenerate. Thus with probability one, �t

1 → 0, i.e.,
beliefs converge to the correct state almost surely. 	
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