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Abstract

I introduce a concave function of allocations and prices – the economy’s potential –

which measures the difference between utilitarian social welfare and its dual. I show

that Walrasian equilibria correspond to roots of the potential: allocations maximize

weighted utility and prices minimize weighted indirect utility. Walrasian prices are

“utility clearing” in the sense that the utilities consumers expect at Walrasian prices

are just feasible. I discuss the implications of this simple duality for equilibrium

existence, the welfare theorems, and the interpretation of Walrasian prices.
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1. Introduction

A landmark of economic theory concerns the determination of prices for all goods in

the economy. General equilibrium theory originated with Walras “. . . whose system of

equations, defining equilibria in a system of interdependent quantities, is the Magna

Carta of economic theory” (Schumpeter, 1954). The modern approach to general equi-

librium theory is due to Arrow and Debreu (1954) and McKenzie (1954) who estab-

lished existence of Walrasian equilibria. Duffie and Sonnenschein (1989) describe the

history and importance of this existence proof, which allowed general equilibrium

theory to gain the central role it now occupies in economics and finance.

Arrow and Debreu’s proof pertains to “abstract economies” or “generalized games”

and builds on Nash’s (1950) existence proof for normal-form games. Their abstract

approach establishes existence of a solution to a system of equations but does not re-

veal if, or why, it has desirable properties. This is the content of the welfare theorems,

the modern versions of which are also due to Arrow (1951) and Debreu (1951). The

first welfare theorem – that the price system results in a Pareto optimal allocation of

resources – is perhaps the central result in price theory. The second welfare theorem

states the converse, i.e. that every Pareto optimal allocation is Walrasian.

Despite their dual formulations, the proofs of the two welfare theorems are very

different in nature. The first welfare theorem requires only positive marginal utility

of income while the second welfare theorem hinges on the assumption of convexity.

Duffie and Sonnenschein (1989) note that as a result of Arrow and Debreu’s work

“. . . the separateness of the two welfare theorems was brought into sharp focus.”

I demonstrate that the welfare theorems encapsulate a simple duality property

of Walrasian equilibria. To this end, I introduce the economy’s potential, which is a

weighted sum of consumers’ utilities of their allocations minus their indirect utilities

at given prices. I show that, for any welfare weights, the potential is a non-positive

and strictly concave function with a unique root corresponding to the Walrasian equi-

librium. The intuition is that allocations solve the primal problem of maximizing

weighted utilities and prices solve the dual problem of minimizing weighted indirect

utilities. Walrasian prices are “utility clearing” in that the utilities consumers expect

are just feasible, i.e. the potential vanishes at the Walrasian equilibrium.
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Usually, the economy is parameterized by initial endowments rather than welfare

weights. While the set of endowments is of higher dimension than the set of welfare

weights,1 no additional equilibria are introduced. The reason is that any endowments

and resulting Walrasian price imply some set of welfare weights. Moreover, existence

of Walrasian equilibrium for arbitrary endowments follows if there is at least one vec-

tor of “equilibrium weights” that produce the correct incomes. I show that existence

of such equilibrium weights readily follows from the Poincare–Hopf theorem.

The next section presents a graphical illustration of duality for a simple exchange

economy. Section 3 introduces the economy’s potential, generalizes the duality result

to any exchange economy, and shows that existence and the welfare theorems are

direct corollaries of duality. Furthermore, duality provides a novel interpretation of

the Walrasian price vector as the gradient of utilitarian social welfare. Section 4

discusses possible applications of the potential to non-convex economies. Proofs can

be found in the Appendix.

2. An Example

Consider an exchange economy with two consumers with Cobb-Douglas preferences

u1(x, y)= 2log(x)+ log(y) and u2(x, y)= log(x)+2log(y). Suppose there are three units

of each good in the economy. Welfare maximization

max
0≤x1+x2≤3

0≤ y1+y2≤3

αu1(x1, y1)+ (1−α)u2(x2, y2) (1)

yields the Pareto-optimal allocations (x1(α), y1(α)) = ( 6α
1+α

, 3α
2−α

) and (x2(α), y2(α)) =

(3−3α
1+α

, 6−6α
2−α

). The red curve in Figure 1 shows the resulting utility pairs (u1(α), u2(α))

for α ∈ (0,1). The shaded area corresponds to the utility possibility set.

The dual of (1) entails minimizing a weighted sum of indirect utilities with respect

to prices. If prices are normalized to sum to one, i.e. the price vector is (p,1− p), then

the indirect utility functions can be written as v1(p, m1) = 2log(
2m1

3p
)+ log(

m1

3(1−p)
) and

1With N > 1 consumers and K > 1 goods the set of endowments is NK dimensional while the set of

welfare weights is N dimensional.
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Figure 1: Illustration of duality. The shaded area is the utility possibility set and

the red curve its frontier. The blue curves depict indirect utilities for given welfare

weights as functions of prices. For α = 1
2
, weighted utility is constant on the dashed

lines and increases to the North-East while weighted indirect utility is constant on

the dotted lines and decreases to the South-West. The unique point where weighted

utility and weighted indirect utility match corresponds to the Walrasian equilibrium.

v2(p, m2) = log(
m2

3p
)+2log(

2m2

3(1−p)
). The economy’s total income is 3p+3(1− p)= 3 and

a consumer’s welfare weight determines her share:2 m1 = 3α and m2 = 3(1−α). The

dual of (1) is thus

min
0≤ p≤1

αv1(p,3α)+ (1−α)v2(p,3(1−α)) (2)

The blue curves show the indirect utility pairs (v1(p,3α),v2(p,3(1−α)) for different

values of α and p ∈ (0,1). For α = 1
2
, the weighted sum of utilities is constant on

the dashed lines and increasing in the North-East direction. The weighted sum of

indirect utilities is constant on the dotted lines and decreasing in the South-West

direction. There is a unique point where weighted utility is maximized and weighted

indirect utility minimized and their values are equal. This point corresponds to the

Walrasian equilibrium.

To see this, note that the solution to (2) is p(α)= 1
3
(1+α) and it is readily verified

2More generally, a consumer’s welfare weight is equal to the inverse of her marginal utility of

income, see Theorem 1 below. For the economy studied here this yields α= m1/3 and 1−α= m2/3.
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that the price ratio
p(α)

1− p(α)
=

1+α

2−α

is equal to consumers’ marginal rates of substitution at (x1(α), y1(α)) and (x2(α), y2(α)).

Hence, these allocations maximize consumers’ utilities given prices (p(α),1− p(α)).

In other words, the Pareto-optimal allocations that follow from (1) form a Walrasian

equilibrium together with the price that follows from the dual program in (2).

3. The Economy’s Potential

Consider an exchange economy with N = {1, . . ., N} consumers and K = {1, . . .,K }

goods. For i ∈ N , let u i : RK
≥0

→ R denote consumer i’s utility function and ωi ∈R
K
>0

consumer i’s endowment. I assume the utility functions are strictly increasing, strictly

concave, and differentiable.3 For k ∈K , let wk =
∑

i∈N ωik denote the total amount of

good k in the economy. The set of feasible allocations is

F(w) = {x ∈R
NK
≥0 |

∑

i∈N

xik ≤ wk ∀k ∈K }

For vectors v,v′ ∈ RK let 〈v|v′〉 =
∑

k∈K vkv′
k

denote the usual inner product. The

Fenchel dual of u i(xi) is defined as

vi(p) = max
xi≥0

u i(xi)−〈p|xi〉 (3)

which is a strictly convex function of prices. An envelope-theorem argument estab-

lishes that the solution to (3) satisfies xi(p)=−∇pvi(p), which is a simplified version

of Roy’s identity. The solution xi(p) is strictly decreasing in each price and further

satisfies limpk↓0 xik(p)=∞ and limpk→∞ xik(p)= 0.

The next lemma relates vi(p) and xi(p) to the traditional indirect utility vi(p, mi)

and the Marshallian demand xi(p, mi) respectively.

3The usual assumption is that the utility functions are quasi-concave, which can be made concave

by a monotone transformation. Intuitively, this construction implies that among utility functions with

the same indifference curves there is one with non-increasing marginal utility. Concave functions are

differentiable almost everywhere. For ease of presentation, I assume differentiability everywhere.
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Lemma 1 For i ∈N , let λi(p, mi) solve 〈p|xi(λi p)〉 = mi, then

vi(p, mi) = λi(p, mi)mi +vi(λi(p, mi)p) (4)

xi(p, mi) = xi(λi(p, mi)p) (5)

Moreover, λi(p, mi) equals the marginal utility of income, λi(p, mi) = ∂vi(p, mi)/∂mi,

and for any price vector, λi(p, mi) is strictly positive and strictly decreasing in mi with

limmi↓0λi(p, mi)=∞ and limmi→∞λi(p, mi)= 0.

Example 1 (CES utility) For i ∈N and ρ i < 1, consider the CES utilities

u i(xi) =
1

ρ i

log(
∑

k∈K

aikx
ρ i

ik
)

with Fenchel duals

vi(p) =
1−ρ i

ρ i

log
(

∑

k∈K

aik

(

pk/aik)
ρi

ρi−1
)

−1

Roy’s identity yields

xik(p) =
(pk/aik)

1
ρi−1

∑

ℓ∈K aiℓ(pℓ/aiℓ)
ρi

ρi−1

which satisfies xik(p/mi) = mixik(p) and 〈p|xi(p)〉 = 1 so λi(p, mi) =
1

mi
. Marshallian

demand is xi(p, mi)= mixi(p) and indirect utility is vi(p, mi)= 1+vi(p)+ log(mi). ■

Let Uα(x)=
∑

i∈N αiu i(xi) denote weighted aggregate utility for some positive weight

vector α ∈RN
>0

. The welfare-maximization program

Wα(w) = max
x∈F(w)

Uα(x) (6)

is equivalent to the saddle-point problem

Wα(w) = min
p≥0

max
x≥0

∑

i∈N

αiu i(xi)−〈p|xi −ωi〉

where the multiplier for the feasibility constraint
∑

i∈N (xi −ωi) ≤ 0 is denoted p

on purpose. The maximization over allocations is solved by xi(p/αi) and using the
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Fenchel duals vi we can write the result as

Wα(w) = min
p≥0

Vα(p,w) (7)

where

Vα(p,w) = 〈p|w〉+
∑

i∈N

αivi(p/αi) (8)

is strictly convex in prices.

The economy’s potential is defined as

Yα(x, p,w) = Uα(x)−Vα(p,w) (9)

From (6) and (7) it follows that the potential is non-positive for all feasible allocations

and non-negative prices. Moreover, it is a strictly concave function of allocations and

prices since Uα(x) is strictly concave and Vα(p,w) is strictly convex.

Let λ(−1)
i

(p, · ) denote the inverse of λi(p, mi) with respect to the income mi.

Theorem 1 If (x, p) is a Walrasian equilibrium of the economy with incomes mi for

i ∈ N then Yα(x, p,w) = 0 for αi = 1/λi(p, mi) and i ∈ N . Conversely, for any α ∈RN
>0

,

Yα(x, p,w) has a unique root (x(α), p(α)), which is the Walrasian equilibrium of the

economy with incomes mi(α)=λ(−1)
i

(p(α), 1
αi

) for i ∈N and
∑

i∈N mi(α)= 〈p(α)|w〉.

Evaluated at the equilibrium price, (8) can also be expressed in terms of the standard

indirect utilities

Vα(p(α),w) =
∑

i∈N

αivi(p(α), mi(α))

which follows from (4) together with λi(p(α), mi(α))= 1
αi

and
∑

i∈N mi(α)= 〈p(α)|w〉.

3.1. Welfare Theorems

A necessary condition for the pair (x, p) to be a root of the potential is that x maxi-

mizes welfare, i.e. it is Pareto optimal. The first part of Theorem 1 thus implies the

first welfare theorem and the converse part implies the second welfare theorem.

Corollary 1 Theorem 1 implies that any Walrasian allocation is Pareto-optimal and

vice versa.
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Figure 2: Illustration of duality for the economy in Example 2.

For the economy in Section 2, the Walrasian equilibrium price and allocation can be

obtained from either the primal welfare-maximization program or the dual program

of minimizing weighted indirect utility. For instance, the primal program yields the

allocations and the price follows from consumers’ marginal rates of substitution. Al-

ternatively, the dual program yields the price and the allocations follow from Roy’s

identity. This is a consequence of the strict concavity assumption. If we relax this as-

sumption to concavity, the tangency in Figure 1 does not necessarily occur. Nonethe-

less, Walrasian prices are “utility clearing,” i.e. they force a zero potential.

Example 2 (Linear utility) Consider an exchange economy with two consumers

with linear preferences u1(x, y)= log(2x+y) and u2(x, y)= log(x+2y). Suppose there is

one unit of each good in the economy. Welfare maximization yields the Pareto-optimal

allocations

(x1(α), y1(α)) =















(3α,0) if α ≤ 1
3

(1,0) if 1
3
≤ α ≤ 2

3

(1,3α−2) if α ≥ 2
3

and (x2(α), y2(α)) = (1− x1(α),1− y1(α)). The frontier of the utility-possibility set, de-

picted by the red curve in Figure 2, corresponds to the resulting utility pairs (u1, u2).
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The Pareto optimal allocations lie on the boundary of the Edgeworth box for any wel-

fare weight and the Walrasian price does not follow from consumers’ marginal rates

of substitution. Instead it follows from mininizing Vα(p,w), which yields

p(α)

1− p(α)
=















1
2

if α ≤ 1
3

α
1−α

if 1
3
≤ α ≤ 2

3

2 if α ≥ 2
3

This outcome is illustrated by the blue curves in Figure 2. ■

3.2. The Greedy Invisible Hand

An envelope-theorem argument applied to (7) establishes the Walrasian price vector

as the gradient of utilitarian social welfare.

Corollary 2 If (x, p) is a Walrasian equilibrium then

p = ∇wWα(w) (10)

for αi = 1/λi(p, mi) and xi = xi(λi(p, mi)p) for i ∈N .

The characterization of the Walrasian equilibrium price as the gradient of utilitarian

social welfare is surprising – Adam Smith’s “invisible hand” steers market partici-

pants to a state of greatest happiness in a simple greedy manner. Yet, the character-

ization is intuitive as it implies a balance of individual and social incentives:

∂kWα(w)

∂ℓWα(w)
=

∂ku i(xi)

∂ℓu i(xi)
(11)

for i ∈ N , k,ℓ ∈ K and αi = 1/λi(p, mi). In other words, individuals’ marginal rates

of substitution match the social marginal rate of substitution. Corollary 2 provides a

simple-yet-powerful way to analytically characterize Walrasian equilibria.

Example 3 (Homogeneous CES) Suppose there are K goods and N consumers

with CES utilities

u i(x) =
1

ρ
log

(
∑

k∈K

akx
ρ

k

)

8



for ρ < 1. Consumers’ endowments are ωi and the total endowments are w =
∑

i∈N ωi.

Aggregate utility Uα(x) =
∑

i∈N αiu i(xi) is maximized at xi = (αi/
∑

j∈N α j)w. The

social weights are αi = 1/(∂vi/∂mi) = mi, so the gradient of utilitarian social welfare

is

∇wWα(w) =

∑

i∈N mi
∑

k∈K w
ρ

k

wρ−1
= p

resulting in price ratios pk/pℓ = (wk/wℓ)ρ. Using mi = 〈p|ωi〉 and xi = (αi/
∑

j∈N α j)w

yields the Walrasian equilibrium allocations

xi =

∑

k∈K ωikw
ρ−1

k
∑

k∈K w
ρ

k

w

for i ∈N . Note that I did not need to solve any individual consumer’s maximization

problem to derive the Walrasian equilibrium price and allocations. ■

3.3. Existence of Walrasian Equilibria

Theorem 1 shows there is a unique Walrasian equilibrium for any welfare weights.

No fixed-point arguments are needed. A simple duality result establishes the Wal-

rasian equilibrium as the unique maximum, and root, of a strictly concave potential.

Usually, the economy is parameterized by endowments ωi ∈ R>0 for i ∈ N rather

than welfare weights. Theorem 1 shows that if there is a Walrasian equilibrium (x, p)

then it is a root of the potential for weights that equal the inverse of the marginal

utility of income: αi = 1/λi(p,〈p|ωi〉). Hence, despite the set of endowments being of

higher dimension (NK ) than the set of welfare weights (N), no additional Walrasian

equilibria are added when parameterizing the economy by endowments.

Do Walrasian equilibria exist for any endowments? Arrow and Debreu (1954)

have answered this question affirmatively by extending Nash’s (1950) existence proof.

Here I present a simpler argument by showing that for any initial endowments there

are “equilibrium weights” that produces the correct incomes. Since Yκα(x,κp,w) =

κYα(x, p,w) for any κ> 0 we can, without loss of generality, scale the weight vector α

so its entries sum to one, i.e. α belongs to the simplex ΣN . For i ∈ N , consider the

fixed-point equations

〈p(α)|ωi〉−mi(α) = 0 (12)

9



By Theorem 1,
∑

i∈N mi(α) = 〈p|w〉, so the left side of (12) defines a vector field on

ΣN . Moreover, limαi↓0 mi(α)= 0 by Lemma 1, so the vector field points inward on the

boundary of ΣN . By the Poincare–Hopf theorem such a vector field has at least one

zero in the interior of ΣN .

Corollary 3 For any economy parametrized by endowments ωi ∈R>0, i ∈N there ex-

ists a weight vector α∈ΣN such that the root of Yα(x, p,w) is a Walrasian equilibrium.

The solution to (12) is not necessarily unique as the next example shows.

Example 4 Consider an exchange economy with two goods and two consumers with

utilities u1(x, y) = 3
2

x
2
3 − 1

2
y−2 and u2(x, y) = 3

2
y

2
3 − 1

2
x−2 and endowments ω1 = (11

6
, 1

6
)

and ω2 = (1
6
, 11

6
). The Fenchel duals are

v1(p1, p2) =
1

2

( 1

p2
1

−3p
2
3

2

)

and v2(p1, p2)= v1(p2, p1). The prices (p1(α), p2(α)) that minimize Vα(p,w) solve

( α

p1(α)

)3
+

( 1−α

p1(α)

)
1
3
= 2

and the equation for p2(α) follows by interchanging α and 1−α, i.e. p2(α)= p1(1−α).

The incomes are m1(α)=α3/p1(α)2+α
1
3 p2(α)

2
3 and m2(α)= m1(1−α). The fixed-point

condition (12) for the equilibrium weight can be written as

p1(α)
(( 1−α

p1(α)

)
1
3
−

1

6

)

= p1(1−α)
(( α

p1(1−α)

)
1
3
−

1

6

)

An obvious solution is α = 1
2

and prices (p1, p2) = (1
2
, 1

2
). Two other solutions are,

approximately, α≈ 0.09, (p1, p2)≈ (0.16,0.79) and α≈ 0.91, (p1, p2)≈ (0.79,0.16). ■

To summarize, parameterizing the economy using welfare weights is economical in

two ways. First, there is exactly one Walrasian equilibrium for every welfare weight.

Second, this unique Walrasian equilibrium follows from duality rather than from a

system of fixed-point conditions. In contrast, parameterizing the economy using en-

dowments is uneconomical for three reasons. First, if (x, p) is a Walrasian equilibrium
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for the endowments ωi then it is also a Walrasian equilibrium for any endowments

ω′
i

that satisfy 〈p|ωi〉 = 〈p|ω′
i
〉 for i ∈N . Second, there may exist multiple Walrasian

equilibria for some endowments as Example 4 shows. Third, computing Walrasian

equilibria necessarily involves solving a system of fixed-point conditions, see (12). It

should be noted that, since the number of goods (K ) is typically assumed to be far

larger than the number of consumers (N), (12) provides a computationally efficient

alternative to solving fixed-point conditions for the equilibrium prices.

Importantly, even if the economy is parameterized by endowments there are no

additional Walrasian equilibria with possibly different features than the potential’s

roots. The Paretian–Walrasian duality derived above thus applies to all Walrasian

equilibria (even when computed using standard fixed-point conditions).

4. Outlook

The potential provides a litmus test for equilibrium existence. Given preferences and

endowments it is a mechanical exercise to compute the potential’s maximum value.

A Walrasian equilibrium exists if and only if this exercise returns nil.

If not, general equilibrium theory is quiet about the allocations and prices that

ensue even when there are obvious gains from trade. For instance, suppose two con-

sumers have max(x, y) preferences and endowments ω1 = (2,2) and ω2 = (1,1). At any

price vector (p,1− p) consumer 1 demands at least four units of one of the goods, rul-

ing out Walrasian equilibrium. Yet, consumers can exchange one unit of either good

for one unit of the other and both be better off.

Non-existence of equilibrium usually stops any further analysis, but that does

not mean that gains from trade will not be seized – the economy continues to operate

after all. Goeree and Roger (2022) demonstrate that the outcome in which one unit is

exchanged corresponds to a maximum of the potential, albeit not a root. They term

these maxima “Y equilibria” and show they exist in any economy, including non-

convex ones. As such, the potential complements general equilibrium’s incomplete

toolkit and provides a compass to navigate economics’ terra incognita of non-convex

economies.
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A. Proofs

Proof of Lemma 1. The indirect utility vi(p, mi) follows from the saddle-point prob-

lem

vi(p, mi) = min
λi≥0

max
xi ≥0

u i(xi)−λi(〈p|xi〉−mi) (A.1)

and is related to the Fenchel dual as follows

vi(p, mi) = min
λi ≥0

λimi +vi(λi p)

Let λi(p, mi) be the solution to the minimization problem then

vi(p, mi) = λi(p, mi)mi +vi(λi(p, mi)p) (A.2)

where the λi(p, mi) for i ∈N are such that budget constraints are binding:

〈p|xi(λi(p, mi)p)〉 = mi (A.3)

From (A.1), ∇pvi(p, mi) = λi(p, mi)(ωi − xi) since mi = 〈p|ωi〉. In addition, from (A.2),

∇pvi(p, mi) = λi(p, mi)(ωi +∇pvi(λi(p, mi)p)). Combining these results yields a sim-

plified version of Roy’s identity: xi(p, mi) = xi(λi(p, mi)p) =−∇pvi(λi(p, mi)p). From

(A.2) it follows that ∂vi/∂mi = λi(p, mi). The budget constraints (A.3) imply that

λi(p, mi)> 0 and that xi(λi(p, mi)p) is strictly decreasing in p and strictly increasing

in mi. The latter implies that λi(p, mi) is strictly decreasing in mi. From (A.3) it

further follows that xi(λi(p, mi)p) vanishes when mi = 0 and xi(λi(p, mi)p) diverges

when mi =∞. Hence, limmi↓0λi(p, mi)=∞ and limmi→∞λi(p, mi)= 0. ■

Proof of Theorem 1. If (x, p) is a Walrasian equilibrium the Marshallian demands

satisfy xi = −∇vi(λi(p, mi)p), see Lemma 1. This can be inverted to λi(p, mi)p =

∇u i(xi), see e.g. Rockafellar (1970, Th. 26.5).4 When αi = 1/λi(p, mi) we thus have

p = αi∇u i(xi), so the xi satisfy the first-order conditions for maximizing Uα. Hence,

x= argmaxx′Uα(x′) as Uα is strictly concave. The Walrasian price p is market clearing

so 0=
∑

i∈N (ωi−xi(p, mi))=∇pVα(p,w) when αi = 1/λi(p, mi) for i ∈N . So p satisfies

the first-order condition for minimizing Vα and p = argminp′Vα(p′,w) as Vα is strictly

convex. Since maxxUα(x)=minp Vα(p,w) the potential vanishes at (x, p).

4Theorem 26.5 in Rockafellar (1970) relates the gradient of a strictly convex function to the gradient

of its dual, which is also a strictly convex function. To apply the theorem use −u and v.
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For the converse part, since p(α) minimizes Vα(p,w) it follows that ∇pVα(p,w) =
∑

i∈N (ωi − xi(p(α)/αi)) = 0, i.e. the xi(p(α)/αi) satisfy feasibility. The unique solution

x(α) to maxx∈F(w) Uα(x) satisfies αi∇u i(xi(α)) = q(α) for i ∈ N and some price vector

q(α). This can be inverted as xi(α) = −∇vi(q(α)/αi) = xi(q(α)/αi). Since x(α) is feasi-

ble by construction, q(α) also minimizes Vα(p,w). Strict convexity of Vα(p,w) implies

q(α) = p(α). By Lemma 1 the xi(p(α)/αi) are optimal Marshallian demands at p(α)

and incomes mi if αi = 1/λi(p(α), mi), which can be inverted as mi = λ(−1)
i

(p(α), 1
αi

).

Taking the inner product of the feasibility condition with the price vector yields

〈p(α)|w〉 =
∑

i∈N 〈p(α)|xi(p(α)/αi)〉 =
∑

i∈N mi(α). To summarize, (x(α), p(α)) is a Wal-

rasian equilibrium of the economy with incomes mi(α). ■
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