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Abstract

We provide theoretical and experimental support on the emergence of

a unidimensional world through communication. Both theoretical and ex-

perimental results suggest that when boundedly rational individuals com-

municate their opinions over multiple issues, disagreement can eventually

be summarized on a unidimensional spectrum, even when imposing very

little structure on the communication process. The presence of structured

social networks is however crucial in determining whether an individual

forms moderate or extreme views.

1 Introduction

Sociologists, political scientists and economists seem to often agree on one thing:
the world is not flat; in fact it is unidimensional! The world we refer to is that
of opinions. While individuals have opinions on myriads of issues, spanning
domains such as politics, the economy or lifestyle, it is often the case that
using a unidimensional spectrum one can describe an individual’s opinions on
all dimensions.

We encounter the best example in politics. Describing someone as a leftist or
a rightist usually provides enough information about her opinions on an array
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of political issues (e.g., redistribution, protection of the environment, attitude
towards immigration or gun possession). Indeed, representing political compe-
tition and analyzing voting behavior on a “left-right” unidimensional spectrum
has dominated the political economy literature.1 Empirical evidence supports
this view, as individuals’ opinions on different issues seem to be significantly
correlated, and the underlying ideology can explain voting behavior of both
legislators and individual voters (Poole and Rosenthal, 1997; Lee et al., 2004;
Ansolabehere et al., 2008). Importantly, unidimensionality seems to extend
even beyond the world of politics, and ideological cleavages spillover to prefer-
ences over leisure activities, consumption and art, as well as personal morality
(see DellaPosta et al., 2015 and references therein, as well as Wilson and Haidt,
2014).

The prevalence of a unidimensional world, not only as a handy theoreti-
cal simplification, but often also as an accurate description of opinions across
domains, raises the question regarding its origin. Some potential explanations
rely on the philosophical underpinnings of ideologies (Bobbio and Cameron,
1996) and how those relate to personality traits (Carney et al., 2008; Gerber et al.,
2010), cognitive and neural characteristics (Duckitt, 2001; Amodio et al., 2007) or
even genetics (Alford et al., 2005). While all these explanations may be relevant,
we note that all these rely on ideologies being stable across time and societal
context, an assumption that seems rather strong (McDonald et al., 2007).2,3

We therefore approach the emergence of unidimensional worlds in a dynamic
context. More specifically, we study a model where individuals communicate
their opinions on an array of issues to others, repeatedly over several periods,
and update their opinions on each issue in each period by taking a weighted
average of their own prior opinion and those of others. In such a process,
first introduced by DeGroot (1974), opinions eventually converge to a single

1From a theoretical perspective, formal political economy models relying on a unidimen-
sional policy space dating back to Downs (1957) and Black (1958) still serve as the workhorse
in the analysis of electoral competition. As Plott (1967) first pointed out extending to more
dimensions can prove challenging, given that equilibria exist only in very particular cases.

2Recently, The Economist went as far as bidding farewell to ‘left versus right’, as it is replaced
by ‘open against closed’ (“The new political Divide”, 2016).

3The definition of ideology itself has proven a non-trivial matter, see for example Gerring
(1997) and Knight (2006) for a discussion of the relevant difficulties.
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point.4 But DeMarzo, Vayanos, and Zwiebel (2003) observed that, if opinions are
communicated over a fixed communication structure, even if opinions eventually
converge there is disagreement at any point in time, which can be summarized by
a single dimension. In our theory, we show that this dynamic process of opinion
formation can give rise to a unidimensional world even if the communication
channels vary over time. That is, in contrast to DeMarzo et al. (2003), we
show that individuals need not communicate in every period with the same
individuals, nor assign the same subjective weight to one’s opinion in all periods.

A B C

Figure 1: Possible distribution of opinions on two issues. Each point represents an
individual’s opinions on the two issues: CrossFit and veganism. Opinions can vary from
extremely negative to extremely positive. Panel A shows an example of uncorrelated
opinions. Panels B and C show examples of unidimensional opinions.

Of course permitting a dynamic communication structure comes at a cost
compared to a static world with a fixed communication structure. While our
approach is more general and possibly more realistic compared to DeMarzo
et al. (2003) regarding the communication channels, it remains partly agnostic
about the exact characteristics of the unidimensional world that may emerge.
The following example illustrates how this is so. Figure 1 illustrates the opin-
ions of five individuals across two issues: the practice of veganism and CrossFit
training.5 Panel A represents a multi-dimensional world, with no apparent

4A long literature focuses on the necessary and sufficient conditions for a society to reach
consensus, as well as the speed at which this can be achieved (see for instance Golub and Jackson,
2010, 2012; Tahbaz-Salehi and Jadbabaie, 2008). For a broad overview see Jackson (2008) Chapter
8.3 and references therein.

5We pick two random issues so as to illustrate the concept of unidimensionality. Notice
that in our setup opinions can be defined in a very broad sense including beliefs, judgements,
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correlation between issues. On the other hand, panels B and C represent two
different unidimensional worlds, where opinions on the two issues are strongly
correlated. While we observe unidimensionality in both panels B and C, there
are differences between the two. The first regards individuals’ relative positions
on the unidimensional spectrum. Individuals 1 and 5 have extreme positions in
panel B on the opposite side of each other. While 1 is still an extremist in panel C,
5 has a more moderate position in that world. Another difference is the direction
of disagreement, captured by the slope of the line indicating the importance of
different issues in the overall disagreement as well as whether the correlation is
positive or negative. While this direction is negative and steep in panel B, it is
positive and flatter in panel C. In terms of our results, our model does predict
that opinions will move from a multidimensional world (panel A) towards a
unidimensional one (panels B and C). Nevertheless, stricter assumptions about
the communication structure as in DeMarzo et al. (2003) also differentiate be-
tween panels B and C. Our results therefore distinguish between the exact role
of fixed social networks and communication in the opinion formation process:
While communication is enough to give rise to a unidimensional world, the
presence of fixed channels is crucial so as to predict its characteristics.

Our study moves beyond theory to provide empirical validation in the form
of a lab experiment. Subjects communicated their opinions over two issues
across ten rounds in groups of five. In two treatments subjects are linked through
a fixed network. Networks differed minimally between these treatments. In a
third treatment subjects listen the opinions of different randomly picked subjects
from their group in each round. In line with the theoretical predictions, our
results support the emergence of a unidimensional world in all three treatments.
We also find support for the role of networks in determining individuals’ relative
positions. Predictions regarding the direction of disagreement prove less robust,
as we do not find support for the theory in this dimension.

Previous experiments provide some evidence to support the idea that indi-
viduals update their opinions by repeatedly averaging their network neighbors’

attitudes and all such fundamental drivers of behaviour that are amenable to social influence or
the advent of new information.
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opinions (see Corazzini et al. 2012; Brandts et al. 2015; Battiston and Stanca
2015). Communication in these experiments is over a single issue and the anal-
ysis focuses on the individual updating process. Our work therefore extends
this knowledge by permitting communication of opinions over multiple issues
and focusing on the emergence of a unidimensional world.

Before proceeding to our theoretical model and experimental results let us
link further our work with relevant strands of the literature. In the political econ-
omy literature, McMurray (2014) shows how political competition can lead to a
unidimensional policy space for parties. This result depends crucially on voters’
ideal points across issues exhibiting a non-zero correlation. Our theory provides
support for this assumption: if voters’ ideal points are monotonic functions of
opinions, communication will lead to them exhibiting perfect correlation across
issues. The political economy literature has also recently provided theoretical
links between the “correlation neglect” bias and polarization and the competi-
tiveness of the electoral system (Ortoleva and Snowberg 2015; Levy and Razin
2015; Glaeser and Sunstein 2009; Levy and Razin 2016). Since our assumed up-
dating process can be attributed to such bias, we complement these results with
a link between “correlation neglect” and the emergence of a unidimensional
world in the presence of dynamic communication channels.

In the communication literature, Spector (2000) shows how unidimensional
beliefs can emerge in a model of sequential cheap-talk communication preceding
a collective decision. Besides the more restrictive setting in his model, there is
a significant qualitative difference in results: in his model individuals end up
agreeing in all but one issue; in our unidimensional world this is not true.
While individuals’ opinions in the long run move arbitrarily close to each other,
disagreement remains across all issues. In a very recent paper, Sethi and Yildiz
(2016) take a different approach and study how the communication network is
shaped by individuals’ simultaneous and complementary efforts to learn about
the state of the world and about others’ perspectives. Our study focuses on
the shape of disagreement. We view these two approaches as complementary.
Assuming that the communication structure is exogenous, as we do, seems
appropriate for the shorter run, where individuals update their opinions on a
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specific set of issues. In the longer run, it is natural to assume that individuals
will try to optimize over their potential interlocutors, as they do in Sethi and
Yildiz (2016). Finally, Klar and Shmargad (forthcoming) conduct an online
experiment to study the effect of social network structure on the spread of
information. They find that in more closely connected networks, opposing
views spread equally and opinions are more balanced, even if one view is
initially under-represented.

2 Theory

2.1 The opinion updating process

Our theoretical framework pertains to the family of average–based updating
processes originated by DeGroot (1974). Our analysis extends on DeMarzo
et al. (2003), who were the first to consider and observe the emergence of uni-
dimensional worlds in such processes. In our framework we impose very little
structure on the communication process. By contrasting the two cases we can
highlight the role of the social network in the shape of the ensuing unidimen-
sional world and formulate testable predictions to be explored experimentally.

Consider a population D consisting of N agents, forming opinions on K
different issues.6 They communicate in discrete time periods t ∈ {1, 2, . . . } and
update their opinions. Their initial opinions at time t = 0 are given exogenously.
The opinion of agent i on issue k at time t, is si, k(t) ∈ R and the N×1 column vector
sk(t) denotes the opinions of all agents on issue i at period t. We summarize all
agents’ opinions in all dimensions at time t by the N × K matrix s(t), where s(0)
is the matrix of initial opinions.

Communication occurs as follows: at every period t ∈ {1, 2, . . . }, an agent
i observes the opinions across all K issues in period t − 1 of a subset of the
population Di(t) ⊆ D, which is called i’s neighborhood. Communication may

6In the current context, it is perhaps best to think of opinions as agents’ estimates about the
state of nature, as this is the way we induce opinions in our experiment. Another alternative
would be to think of them as preference parameters, like attitudes towards different choice
alternatives. In any case, the internal consistency of the model of opinion dynamics is not
affected by their exact meaning, as it is a purely mechanical process.
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not be reciprocal, meaning that j ∈ Di need not imply that i ∈ D j. The collection
of neighborhoods Di(t) for all i ∈ N defines the network of communication in
period t. This network can be represented by a N × N adjacency matrix G(t),
where Gi, j(t) = 1 if j ∈ Di(t) –defining j as i’s neighbor–, Gi,i = 1 for all i as every
agent is assumed to remember her opinion in t−1, and Gi, j(t) = 0 if j < Di(t). This
network is assumed to be strongly connected, which is a necessary condition to
ensure the flow of information in the population.7 Crucially, this network may
change in every period.

Opinion updating occurs as follows: at every period t ∈ {1, 2, . . . }, agent i
assigns weight Ti,i(t) ∈ (0, 1) to her own prior opinion, weight Ti, j(t) ∈ (0, 1) to
the observed opinion of each of her neighbors j ∈ Di(t), and weight Ti, j(t) = 0 to
all j < Di(t) such that

∑N
j=1 Ti, j = 1. This weight can be considered as the relative

precision agent i assigns to j’s opinion, compared to the rest of her neighbors.
The collection of all weights forms a N × N matrix T(t) =

(
Ti, j(t)

)
, which will

be called the listening matrix. It is useful to define a sequence of such listening
matrices asTt = {T(τ)}tτ=1 when finite and asT∞ = {T(τ)}∞τ=1 when infinite. Notice
that if the network varies, then by definition the listening matrix varies as well.
However, even if the network were to remain the same the listening matrix may
still vary. We can now formalize the opinion updating process in its general
form as:

s(t + 1) = T(t + 1) · s(t) (1)

where (1) can be also written as follows:8

s(t + 1) =

t+1∏
τ=1

T(τ) · s(0) (2)

The distinction between the listening matrix and the underlying network
reflects the two key ingredients of the opinion updating process. The latter

7A network is said to be strongly connected if there is a directed path from any agent i to
any other agent j in the network. A directed path from i to j is a directed sequence of distinct
agents (i1, i2, . . . , il) such that i1 = i, il = j and Gih,ih+1 = 1 for all h ∈ {1, 2, . . . , l − 1}.

8As matrix multiplication is in general non–commutative, it should be clarified that we

consider backwards matrix products, i.e.
t∏
τ=1

T(τ) = Tt · Tt−1 · · · · · T1.
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captures the communication structure within the population: who listens to whom
in each point in time? The listening matrix adds to that the behavioral elements
of opinion updating: how much weight one assigns on her neighbors’ opinions in
each point in time? The distinction between these two becomes particularly
important in our experimental setup. While in the lab it is possible to control the
shape of the communication structure (the network), it is not possible to control
the weight put by each subject to others (the listening matrix). Compared
to DeMarzo et al. (2003) who assume that the listening matrix and network
remained fixed, we permit a very general communication process were both are
permitted to vary across rounds. A critical restriction we retain in common is
that the agents are assumed to use the same listening matrix in all issues during
the same period, which implies that they assign the same relative weight to the
opinion of a given individual in all issues of discussion.

2.2 Properties of an updating process

2.2.1 Unidimensional opinions

We say that opinions are unidimensional when the points describing each agent’s
opinion on the K dimensions all fall on a straight line that traverses RK. To
formalize this idea we introduce some notation related to principal component
analysis (PCA). In general, principal component analysis allows the projection
of multidimensional data in fewer dimensions, in a way that most of the total
variance is still captured, despite the reduced number of dimensions. In our
case, the data correspond to the multidimensional opinions of the agents and
the parameter of interest is βP(t) ∈

[
1
K , 1

]
, which is the percentage of total vari-

ance explained by the 1st principal component, PC1(t).9 The major advantage of

9The calculation of principal components is done as follows: Let ŝ(t) = s(t) − 1 s̄(t), where
s̄(t) is an 1 x K vector containing the mean opinion in each dimension at time t and 1 is a N x 1
vector of ones. Let PCn(t) be the eigenvector corresponding to the n-highest eigenvalue of the K
x K covariance matrix of ŝ(t). PC1(t) is the 1st principal component of opinions at time t. Then,
sP(t) = (ŝ(t) · PC1(t))T is the projection of agents’ opinions on this principal component. Finally,
let βP(t) ∈

[
1
K , 1

]
be the percentage of total variance explained by the 1st principal component. To

calculate βP(t) one needs to calculate the projection of ŝ(t) on all principal components and take
the covariance matrix of that. This is a diagonal matrix and βP(t) is the ratio of the first element
of the diagonal over the sum of all diagonal entries. For a thorough discussion on principal
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PCA is that it allows us to consider the relation between multiple dimensions
at once, instead of performing bilateral comparisons. Intuitively, when βP(t) is
close to one, this means that there exists a dimension (which is a linear com-
bination of the dimensions corresponding to different issues) that can capture
most of the observed disagreement between agents. When βP(t) = 1 opinions
are unidimensional. Thus, we define the following property:

Property 1. (Unidimensionality) An opinion formation process that can be
described by (1) has the Unidimensionality property when

lim
t→∞

βP(t) = 1

The unidimensionality property formalizes the idea that communication can
lead to a unidimensional world (e.g., panels B and C of Figure 1).

2.2.2 Relative positions

Notice that Unidimensionality ensures that the relative positions of each agent
with respect to all others will be the same on all issues. This comes as a direct
result of the linear relation between opinions. Thus, once Unidimensionality is
achieved relative positions on the different issues can be summarized by an
agent’s position on the line. Referring again to Figure 1, when comparing the
opinions of individual 3 and 5, one can say that while in Panel B individual 5
has more extreme opinions than individual 3 the opposite holds in Panel C.

To summarize formally a population’s relative positions we construct the
N ×N opinion comparison matrix Cm,n whose element Cm,n

i, j is equal to 1 whenever
i’s opinion on the line relative to j’s is concordant to m’s opinion relative to n’s,
and equal to 0 otherwise.10 If unidimensionality holds, the choice of the reference

component analysis see Jolliffe (2014).
10A formal definition would be as follows: Consider the following relative comparison function

c(x, y; m,n) =


1 , i f x > y & m > n

or x < y & m < n
0 , otherwise

The opinion comparison matrix Cm,n(t) has elements Cm,n
i, j (t) = c(sP

i (t), sP
j (t); sP

m(t), sP
n(t)), where the
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pair (m,n) is inconsequential, resulting in the same comparison matrix up to
transposition.11

At any point in time t, the opinion comparison matrix is determined via (1)
by s(0) and Tt, a set of parameters that grows infinitely with t. We will later
show that in some cases much fewer information is sufficient for determining
the opinion comparison matrix of the process in the long–run. In those cases the
process is said to have Position determinacy which is the following property.

Property 2. (Position determinacy) An opinion formation process that can be
described by (1) has position determinacy if:

lim
t→∞

Cm,n(t) = Ĉ (T ) , for any s(0) ∈ RK

where Ĉ is an opinion comparison matrix that depends only on a finite set of
parameters T , which is independent of s(0).

Therefore, if Position determinacy holds, then relative positions in the long-run
converge in a way that is captured by the long–run opinion comparison matrix and
do not depend on the initial opinions.

2.2.3 Direction of disagreement

Finally, we turn to the determinacy of the line’s direction. The way a line
traverses the K-dimensional space represents how much of the disagreement
in opinions can be attributed to each dimension. For instance, if K = 2, a line
perpendicular to one of the axes, means that all agents agree on that dimension
and all disagreement comes from the other dimension. It also informs about the
sign of the correlation of opinions between pairs of issues. The direction of the
line is given by the 1st principal component of opinions at time t, PC1(t).

arguments of function c are denoted as defined in principal component analysis. It follows from
(2) that an opinion comparison matrix is a function of the sequence of listening matrices and
initial opinions: Cm,n(t) = C(Tt, s(0)).

11Relative positions can be summarized by other, perhaps simpler, measures. The advantage
of the opinion comparison matrix for our study will come to light in the analysis of the exper-
imental data. There it allows for a direct comparison of relative positions of pairs of agents in
different treatments.
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It is easy to see that in a process like (1), if Unidimensionality holds then once
opinions are unidimensional the direction of the line cannot change. Moreover,
notice that at each point in time t PC1(t) is determined via (1) by Tt and s(0).
Similarly to the previous property, we will later show that in some cases fewer
information will be sufficient to determine the direction of disagreement in the
long–run. In those cases the process will be said to have Direction determinacy
which is the following property.

Property 3. (Direction determinacy) An opinion formation process that can be
described by (1) has Direction determinacy if:

lim
t→∞

PC1(t) = W(T , s(0))

where W is a vector that depends on a finite set of parameters T and s(0).

Unlike for Position determinacy, in the case of Direction determinacy initial opin-
ions still play a role, as these set constraints on what directions are achievable.
For example if there is no difference in the initial opinions on one dimension,
then this cannot change in the long run.

2.3 Theoretical results

The process described by (1) has been shown under a broad range of conditions
to lead to consensus in all issues, i.e. in the long–run all agents end up having
common opinions in each issue.12 However, despite the fact that opinions
converge, at each point in time there is disagreement. Unidimensionality implies
that as opinions evolve and before they fully converge this disagreement can be
summarized in a single dimension, which is a linear combination of all issues.

Before stating the results, we need to introduce some additional terminology
and notation. Namely, for any listening matrix T we can calculate and rank its
eigenvalues.13 We denote by α2 the second largest eigenvalue of this matrix.

12In our case, the conditions that the network is strongly connected with all agents putting
strictly positive weights to themselves and to all their neighbors in each period is sufficient to
obtain the result with a direct adaptation of the proof by Tahbaz-Salehi and Jadbabaie (2008).

13The eigenvalues are ranked according to their modulus, as they might be complex numbers.
The modulus ||α|| of a complex number α = a + ib is ||a + ib|| =

√

a2 + b2.
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Moreover, recall that the network is considered to be strongly connected, with
each agent putting a strictly positive weight both to her own opinion and to that
of each one of her neighbors.14

Based on these, DeMarzo et al. (2003) study a particular class of such updating
processes where agents are only allowed to change the weight they put on their
own opinion across periods. Namely:

T(t) = (1 − λ(t)) I + λ(t)T (3)

where λ(t) ∈ (0, 1] and T is a listening matrix that remains fixed. It turns out
that as long as the agents do not become “too stubborn, too early”15 the analysis
can be concentrated on the properties of T and the following result is obtained:

Theorem 1 (restatement of Theorem 4, DeMarzo et al. (2003)). Consider a generic
listening matrix T with α2 ∈ R. Then, the opinion process described by (3) satisfies
Unidimensionality, Position determinacy and Direction determinacy.

In the original article the authors provide the exact relationship between
T and long run relative positions, as well as how T and s(0) determine the
direction of disagreement. In fact, the result is proven by showing that relative
opinions stabilize in the same way across all issues and therefore they must be
unidimensional. Note that this argument cannot be extended to cases where the
relative importance of neighbors’ opinions change, since then even if opinions
become unidimensional the relative positions may keep changing.

In addition to this, assuming T to be constant, apart from being very re-
strictive for the agents’ behavior, it is also not easily testable. However, Unidi-
mensionality turns out to be a more general property that emerges even for the
general class of process described in expression (1), where the listening structure
is allowed to change in a very general way. Namely:16

14This standard assumption is essential for the analysis, as it allows us to interpret the
listening matrix T as the transition matrix of a finite, irreducible and aperiodic Markov chain.

15The formal necessary condition for the results is that
∑
∞

t=1 λ(t) = +∞.
16The result is proven in terms of perfect correlation between two arbitrary issues, therefore

it can be directly extended to K–dimensional opinions where perfect correlation is achieved
between each pair of issues. Perfect correlation is conceptually identical to Unidimensionality
as explained via PCA. Nevertheless, it should be noted that in general there is no one–to–one
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Theorem 2. Consider a sequence of generic listening matrices, T∞, with α2(t) ∈ R for
all t, and a matrix of initial opinions s(0). Then, the opinion process described by (1)
satisfies Unidimensionality.

Notice that this result does not specify the way the elements of the sequence
are selected, but only their properties. This means that the matrices could
be determined either randomly or deterministically, as long as they satisfy the
necessary assumptions. It therefore suggests that unidimensional worlds should
be the norm. As long as the repeated averaging updating process is an accurate
description of opinion dynamics, we should expect to see such worlds arise. No
further restrictions on the structure of communication are necessary.

For clarification, in both theorems the term generic means that the listening
matrices are diagonalizable and that there are no ties in the ranking of eigenval-
ues, except for complex conjugates. Both of these properties are generically
satisfied and made here for technical reasons. Diagonalizability allows us to
rewrite opinions as a combination of eigenvalues and eigenvectors, whereas ‘no
ties’, together with the second eigenvalue being real, ensure that the impact of
eigenvectors corresponding to smaller eigenvalues on opinion differences will
die out earlier, thus allowing the emergence of unidimensionality. The condition
requiring the second eigenvalues to be real is more intuitive as it rules out cases
where the listening matrix is dominated by a one–way cycle that can prevent the
emergence of unidimensionality. In fact, our theorem would still hold if these
two requirements hold for all but finitely many elements of the sequence.

Taken together, Theorems 1 and 2 can be summarized as follows: a) commu-
nication and social influence lead to the emergence of a unidimensional world,
b) a stable underlying structure of social interactions determines the relative po-
sitions of agents in this world, c) combining this structure with the starting point
of the process determine the direction of disagreement. These theoretical pre-
dictions are not only provokingly strong, but also surprisingly crisp. Yet, they
depend crucially on the assumption that agents update their opinions through
averaging. The literature already supports the idea that this is a good approx-

relation between correlation and the percentage of variance explained by PCA, despite the two
measure being intuitively similar.
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imation: individuals seem to update their opinions as if taking the average of
their neighbors’ opinions. What interests us is whether the predictions about
the shape of disagreement in a population, stemming from the formal averaging
model, carry over to an empirical setting. We use a lab experiment to answer
this question.

3 Experimental Design

In the experiment we aim to recreate the stylized communication setup of the
model. What we cannot control is the way subjects in the lab update their
opinions after communication. As mentioned, this is a crucial assumption in the
theory of the emergence of unidimensional worlds. Therefore, the experimental
exercise tests the robustness of our theoretical predictions to the behavioral
elements of the model.

We use three different experimental treatments. In all treatments, subjects
repeatedly communicate their opinions about an unknown two-dimensional
state. In the baseline treatment, communication takes place in a fixed network
structure, i.e. subjects can listen to the same other subjects in each round. In a
second treatment, the network remains fixed but is different than the one in the
baseline treatment. In the third treatment, the network changes randomly in
each round of communication. In what follows we describe the way we induce
and elicit opinions, how subjects communicate, and give more detail about the
network structures used in the different treatments.

3.1 The experimental task

The main task during the experiment is a non-competitive guessing game pre-
sented in the following form:

In a tank there are 100000 balls. These balls are either RED or BLUE. The number
of balls of each colour is random and any combination is equally likely. You are asked
to guess the number of RED balls in the tank. This number could be anywhere between
0 and 100000. Before making your guess, you observe a sample of 100 balls picked
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randomly from the tank.

The number of red balls represents an unknown state and the guess repre-
sents the subject’s opinion about what this state is. For the main experiment
we ask subjects to make guesses about two different tanks simultaneously, thus
obtaining a two-dimensional state and respective opinions. The high number
of balls is chosen so as to avoid the necessity of decimal numbers for subjects to
give finer guesses.

3.2 The experiment

Subjects play the guessing game for three phases, consisting of 10 rounds each.17

In each phase they are playing two guessing games simultaneously: there are
two tanks, one with red and blue balls, and one with green and orange balls.
The state and private signals for each of the two parallel games are drawn
independently. In each round subjects enter two guesses, one for each tank and
observe both guesses for each of their neighbors.

We use three treatments: Fixed 1 (F1), Fixed 2 (F2) and Random (R) as
depicted in Figure 2. What varies across treatments is the network structure and
its stability. In treatments Fixed 1 and Fixed 2 the network remains fixed but is
different in each one (Figures 2a and 2b). Fixed 1 serves as our baseline treatment.
The network in Fixed 2 is minimally different than the baseline: it is obtained by
adding a single directed link to the baseline. In treatment Random the network
structure changes randomly in each round of communication (Figure 2c). Each
node observes the same number of neighbors as the corresponding node in the
baseline. The identity of these neighbors is drawn randomly in each round. We
explain the choice of the exact network structures at the end of this section, as it
will be facilitated by the presentation of our research hypotheses.

In the two treatments where the network structure is fixed, the identity of
each subjects’ neighbors (group members whose guesses she observes) remains

17The main experiment was preceded by two parts that aimed at familiarizing subjects with
the information and communication environments. In the first part subjects made guesses for a
single tank without communication. In the second part subjects could communicate but again
made guesses for only one tank. Instructions for all parts can be found in the appendix.
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1 2 3 4 5
(a) Fixed 1

1 2 3 4 5

(b) Fixed 2

1 2 3 4 5
1 neighbor 2 neighbors 3 neighbors 2 neighbors 1 neighbor

(c) Random

Figure 2: Treatments. The graphs represent the 5-node network structure used for
communication in each treatment. An arrow from one node to another means that the
latter listens to the former. In treatment Random each node has the same number of
neighbors as the corresponding node in Fixed 1, but these change randomly in each
round.

fixed throughout the experiment and subjects are informed that this is so. To-
gether, the sets of neighbors for each subject in a group form a directed network.
Subjects are not informed about the structure of their group’s network. They
are told that observing another group member’s guess does not mean that that
group member can observe their own guess. In the treatment with a random net-
work subjects are informed that the number of neighbors they observe remains
fixed, but a new set of neighbors is drawn randomly in each round. Neighbors
are always drawn from within the same 5-member group.

Initial opinions in the experiment are induced by providing each subject at
the beginning of each phase with a 100-ball sample from each tank. Each tank
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k contained a number θk of target balls (red for tank 1, green for tank 2). Each
θk is drawn from a uniform distribution over {0, 1, 2, ..., 100, 000}. The samples
were i.i.d. draws from a binomial distribution with parameters n = 100 and
p = θk

100,000 . For each group there was a set of 2× 3 = 6 draws for θk (2 for each of
the 3 phases) and 5× 2× 3 = 30 samples (one 2 for each of the 5 group-members
in each phase). Across the experiment we used 3 such sets in approximately
equal proportions in each treatment.

3.3 Logistics

The experiment took place at the Lancaster Experimental Economics Laboratory
hosted at the Department of Economics at the Lancaster University Management
School (LUMS). A total of 180 subjects were recruited among LUMS students.18

In total we had 12 groups for each treatment.
Final earnings were determined by selecting randomly the payoffs in one

of the three phases in part 1, one of the five rounds in part 2 and one of ten
rounds for each of the three phases in part 3. Subjects received an additional £3
participation fee. Average total payment was around £10 and the experiment
lasted about 90 minutes.

3.4 Hypotheses

We start by forming preliminary hypotheses about the implicit assumptions of
our model. Namely, whether subjects do update their opinions in a way that
resembles averaging over one’s neighbors’ opinions and whether they do this
in the same way for both dimensions. Notice that if the former holds then
opinions need to come closer over time, something that would be reflected on a
diminishing coefficient of variation. If the latter holds, then the decrease of the
coefficient of Variation should be the same across the two dimensions. We will
therefore first test the following two hypotheses:

18There were 15 sessions in total. Most sessions had 15 participants, except for 1 with 10
subjects and 3 with 5 subjects due to low turnout. Initially 190 students were recruited. During
one of the sessions a technical issue affected the play of two groups (10 subjects) altering the
intended treatment. We excluded this data from further analysis.
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Hypothesis 0 (a). The coefficient of variation of guesses across a single dimension is
decreasing across all rounds.

Hypothesis 0 (b). The coefficient of variation of guesses across a single dimension
moves the same way for both dimensions.

Following Theorem 2, Unidimensionality should obtain in all treatments. That
is, as long as subjects update their guesses for both dimensions by taking some
form of average of their own and others’ guesses of the previous round, these
guesses should get aligned. Whether the network is fixed or not should not
matter. We therefore consider the following hypothesis:

Hypothesis 1. In all treatments the variance of guesses explained by the first principal
component converges to 1.

Following Theorem 1, it should be possible to predict relative positions if we
knew the listening matrices used and these were fixed. But we cannot know the
exact weight each individual puts on each of the others’ guesses, neither whether
such a weight – if in fact it exists! – remains fixed. What the lab environment
allows us to do is to restrict the listening matrices each group can use by fixing
a particular network structure – like in treatments Fixed 1 & 2 – or force it to
change in each round – like in treatment Random.

Without making any further assumptions on the specific listening matrices
used by subjects in the experiment we can still formulate an hypothesis about
the treatment effects on relative positions.

Hypothesis 2 (a). In treatments Fixed 1 and Fixed 2, agents’ relative positions as
projected on to the long-run opinions’ first principal component are determined by the
agents’ positions in the network and therefore converge to a specific opinion comparison
matrix: Ĉm,n

F1 , Ĉm,n
F2 .

In other words, we expect relative positions to become the same within each
treatment and expect to see differences across treatments. In treatment Random
Theorem 1 does not apply, as the listening matrix cannot remain the same.
Relative positions can therefore not be determined by each subject’s label.
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Hypothesis 2 (b). In treatment Random agents’ relative positions as projected on to
the long-run opinions’ first principal component are random.

To obtain more crisp predictions about subjects’ relative positions after some
rounds of communication we look at the theoretical predictions that follow the
assumption that subjects put an equal weight to their own and every other
neighbor’s opinion. While strong, the assumption is also natural, since sub-
jects in the experiment are not aware of the network structure and therefore all
neighbors are identical to them. The listening matrices TF1 and TF2 would then
be equal to:

TF1 =



1/2 1/2 0 0 0
1/3 1/3 1/3 0 0
0 1/4 1/4 1/4 1/4
0 0 1/3 1/3 1/3
0 0 0 1/2 1/2


TF2 =



1/2 1/2 0 0 0
1/3 1/3 1/3 0 0
0 1/4 1/4 1/4 1/4
0 0 1/3 1/3 1/3

1/3 0 0 1/3 1/3


The difference between these two listening matrices is in the last row repre-

senting the weight that agent 5 assigns to his neighbors. While in Fixed 1 she is
only observing the guesses of agent 4, in Fixed 2 she is also observing the guess
of agent 1.

Relative positions are determined by the ranking of agents’ corresponding
element in the second row eigenvector of T.19 For TF1 it is equal to Vc

2(T1) =

(−2.5,−1.667, 0, 0.667, 1)T, which means that the relative positions for the five
agents is (1, 2, 3, 4, 5) (or (5, 4, 3, 2, 1)). The second row eigenvector of TF2 is
equal to Vc

2(T2) = (−4.5,−1.068, 3.585, 5.356, 1)T, which means that the relative
positions of the five agents from extreme left to extreme right will be (1, 2, 5, 3, 4)
(or (4, 3, 5, 2, 1)).20

Intuitively, the more access an agent has to the opinions of others, the more
moderate she becomes. Agents with extreme opinions tend to be those who do
not have access to a lot of information. This intuition is supported by computer
simulations. Therefore, while in Random it is not possible to predict on which

19For details see DeMarzo et al. (2003).
20Notice that these are also the relative positions of individuals in the examples of unidimen-

sional worlds shown in Figure 1: in panel B for TF1 and in panel C for TF2.
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side of the unidimensional spectrum one will end up, we can make predictions
about the likelihood of a specific agent being more or less extreme than others.
In particular, subjects labeled 1 and 5 are expected to be the most extreme, then
2 and 4, and finally 3 is expected to be the most moderate. Using computer
simulations we can calculate a specific expected opinion comparison matrix
ER

[
Ĉm,n

]
.

We summarize our predictions from assuming equal weights in the following
hypothesis:

Hypothesis 2 (c). Agents’ relative position as projected on to the long-run opinions’
first principal component will converge to the following opinion comparison matrices:

Ĉ1,3
f ixed 1 =



0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1
0 0 0 0 0


Ĉ1,3

f ixed 2 =



0 1 1 1 1
0 0 1 1 1
0 0 0 1 0
0 0 0 0 0
0 0 1 1 0



Erandom

[
Ĉ1,3

]
=



0 0.82 1 0.82 0.79
0.18 0 0.54 0.54 0.56

0 0.46 0 0.45 0.55
0.18 0.46 0.55 0 0.57
0.21 0.44 0.45 0.43 0


Notice that we use m = 1 and n = 3 for the opinion comparison matrices.

The predicted matrices for Fixed 1 and Fixed 2 are not affected by this choice,
but we would get slightly different numbers for the prediction for Random. We
choose these for the construction of the opinion comparison matrices because
for the case of fixed networks subjects at these nodes remain at the same distance
in both networks and are the furthest apart from all such pairs of nodes. This
makes the exercise less sensitive to noise.

Because of Direction determinacy we should expect to see groups within the
same fixed network treatment that start off from the same initial constellation of
guesses to converge to the same line. This is captured by the rotation of the first
principal component with respect to the horizontal axis, measured in radians
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(rads). At zero rads all disagreement is with regard to guesses about tank 1. At
π/2 rads the variance of guesses in the two dimensions is the same. Negative
values reflect the fact that guesses are inversely correlated.

Hypothesis 3. In fixed network opinion dynamics, the rotation of the first principal
component of long-run guesses is determined by the network’s structure and the initial
constellation of guesses.

It should now be clear why we chose these particular network structures for
our experiment. For the baseline structure we had two desiderata: i) it should
be simple so that theoretical predictions regarding subjects relative positions in
the opinion space can be directly traced back to their position in the network; ii)
it should be possible to minimally alter the baseline and obtain a substantially
different prediction for relative opinions, in order to test our hypothesis of the
direct link between the ordering and the network structure. A simple undirected
linear network would satisfy the first condition but not the second: adding a
single directed link to the line, like in Fixed 1, gives the same predicted ordering.
By adding to Fixed 1 a single directed link from node 1 to node 5 we obtain Fixed
2, where predicted relative positions are now different. This satisfies our second
condition, providing the desired testbed for our ordering hypothesis.

4 Results

Figure 3 shows the evolution of opinions across rounds in a phase for one of the
groups in the experiment. There is a high degree of heterogeneity in what we
observe, but this example is shown to facilitate the understanding of the different
measures we use to summarize the data. It also showcases some features that
characterize the data set.

First of all, guesses become closer over time, as captured by the normalized
coefficient of variation (NCV).21 Most of this convergence happens in the first five
rounds. In this example we also see the group’s guesses quickly align, captured

21The coefficient of variation of guesses for one tank is CV(t) =
st.dev.(guesses at t)
mean(guesses at t) . We then report

the normalized coefficient NCV(t) =
CV(t)
CV(1) .

21



Figure 3: The evolution of opinions. Guesses across rounds in a phase for a particular
group in treatment Fixed 1 in the experiment (session 6, group 2, phase 2). Each graph
represents guesses in each round t, from 1 to 10. Each point represents a subject’s guesses
(in thousands) for each tank. Tank 1 in the horizontal axis and tank 2 in the vertical
axis. Labels 1 to 5 refer to subjects positions in the network. The dashed line traces the
first principal component. NCV 1 and 2 is the coefficient of variation of guesses for the
respective tank, normalized to be 1 in t = 1. βP(t) is the variance explained by the first
principal component in t. The opinion comparison matrix C1,3 is represented as a ’heat
map’, with white for entries equal to 1, black for entries equal to 0. An X is used for
the main diagonal and elements c1,3 and c3,1, i.e. the elements that are determined by
definition and remain the same across all rounds. Rads refer to the angle of rotation of
the first principal component with respect to the horizontal axis, which measures the
direction of disagreement.
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by the high percentage of variance explained by the first principal component
(βP(t)). The relative positions of subjects’ projection on this line also converges
very quickly and follows the order of their labels: 1 next to 2, next to 3 etc. This is
captured by the opinion comparison matrix C1,3, represented here graphically for
easier comparison. The process of convergence, as captured by all these different
measures is interrupted in round 6, where subject 5 makes a guess for tank 1
that is far from her own and others’ previous guesses. “Jumps” or perturbations
like this one occur somewhat frequently in the data and are sometimes of much
greater magnitude. Interestingly, we observe that the process of convergence
picks up again immediately, only now on a line ‘tilted’ by the jump.

4.1 Convergence and Perturbations

The three upper panels of Figure 4 show the average NCV per round of guesses
for each tank in each treatment. What immediately stands out is the jump in the
value for tank 2 in round 3 of treatment Fixed 1 that jumps up to 150%. This is
mostly driven by a particular case where the group’s NCV for tank 2 jumped up
to 2653%. Jumps like that, although smaller in magnitude are common in the
data. See the example in Figure 3 for such an instance in t = 6. Some of those,
especially the biggest in magnitude, can be attributed to ’mistakes’, such as mis-
typing one’s guess. Others may be deliberate, although there does not seem to
be some systematic pattern of behavior to explain them.22 We do observe that
such perturbations are less common in Fixed 2. This can be seen in Figure 4 by
noticing that the mean and median for the NVC in Fixed 2 are closer than in the
other two, for both dimensions, which is evidence of a distribution with fewer
extreme values.

Irrespectively of what causes them, these perturbations can be useful in
our study. Individuals’ opinions in real life may also be subject to shocks.
Even if their causes are different from what makes subjects in the lab “jump”,

22One reason for such perturbations could be that a subject tries to hedge by making guesses
across a reasonable range of values, even if that is not optimal. Another reason could be
boredom, which can affect subjects’ behavior in repetitive experiments as this and may lead to
arbitrary choices. The observation that boredom may lead to random responses in guessing
games was first made by Siegel (1961).
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Figure 4: Normalized coefficient of variation. The graphs show the mean and median NCV
values per round in each treatment. Dashed lines correspond to the NCV of guesses for
tank 1 and dot-dashed lines correspond to the same for tank 2.

having this feature in the lab can be informative about the robustness of the
unidimensionality properties to similar “noise”.

The lower panels of Figure 4 show again the median NCV in each round, for
each tank, in all three treatments. The pattern of convergence can be seen much
better here. We do not observe any systematic differences in the convergence
pattern between the two dimensions in each treatment. Across treatments we
observe that convergence appears to last longer in Random, where it also reaches
higher levels (lower NCV). In all treatments, we see that NCV decreases mostly
in the first five rounds and remains rather flat in the last five rounds.

At this point we can state the following results regarding Hypothesis 0 (a)
and (b).

Result 0 (a). Hypothesis 0 (a), stating that the coefficient of variation of guesses across
a single dimension is decreasing across all rounds, cannot be rejected.

Support: Figure 4 provides some graphical support for this result based on
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aggregate data. Based on the non-parametric seasonal Mann-Kendall test for
trend, we can reject the hypothesis that there is no trend in the coefficient of
variation series for guesses for Tank 1 (p < 0.001) and Tank 2 (p < 0.001) in
Fixed 1, for Tank 1 (p < 0.001) and Tank 2 (p < 0.001) in Fixed 2, and for Tank 1
(p < 0.001) and Tank 2 (p < 0.001) in Random.

Result 0 (b). Hypothesis 0 (b), stating that the coefficient of variation of guesses across
a single dimension moves the same way for both dimensions, cannot be rejected.

Support: Figure 4 provides some graphical support for this result based on
aggregate data. In all three treatments, the NCV decreases significantly over
the first 5 rounds and then stabilizes in both dimensions. A Wilcoxon signed-
rank test comparing pairs of groups’ NCV for each dimension in each round of
each treatment does not reject the null that these are different in any but two
instances: in round 7 of treatment Fixed 2 (p = 0.053) and in round 5 of treatment
Random (p = 0.04). Given the high number of comparisons (3 treatments × 9
rounds = 27 comparisons) it is expected to obtain some false positives. Applying
any of the standard corrections for multiple testing will render both these cases
non-significant even at the 10% level.

4.2 Unidimensionality

We now turn our attention to the first of our main research questions: can com-
munication lead to unidimensional opinions? Recall from Theorem 2 that this
should be true for an arbitrary sequence of listening matrices and hence, as stated
in Hypothesis 1, we should observe evidence of this in all three experimental
treatments.

The left panel of Figure 5 shows the mean βP, which is the percentage of
variance in the guesses explained by the first principal component, in each
round for each of the three treatments. The right panel of the figure shows the
median for the same value.

Result 1. Hypothesis 1, stating that in all treatments the variance of guesses explained
by the first principal component converges to 1, cannot be rejected.
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Figure 5: Percentage of variance in the data explained in the data, across round and treatment.
The left panel shows the mean percentage of variance explained by the first principal
component, βP, across all group observations in a given treatment. The right panel does
the same for the median. By definition βP lies between 0.5 and 1.

Support: Figure 5 provides some graphical support for this result based on
aggregate data. More conclusively, based on the non-parametric seasonal Mann-
Kendall test for trend, we can reject the hypothesis that there is no positive trend
in the series for βP in Fixed 1 (p < 0.001), in Fixed 2 (p < 0.001) and in Random
(p = 0.002).23 Furthermore, the median group has a βP(t) of 96.9 on average in
rounds 6 to 10 in Fixed 1, and the same value is 90.4 for Fixed 2 and 92.3 for
Random.

There are a few things to note with respect to this result. First of all, while
it holds for all treatments, convergence to unidimensionality is clearly stronger
in Fixed 2. As we mentioned above, in this treatment there is less noise due to
perturbations, which could explain this difference. Second, it is clear from the
graphs that the increase in βP happens mostly in the first five rounds. This is
confirmed by running the seasonal Mann-Kendall test for trend but restricting
the data to the respective rounds. For rounds 1 to 5 we can strongly reject the
null that there is no positive trend in all three treatments (p < 0.001 for all three

23Note that the seasonal Mann Kendall test uses information from individual group obser-
vations, not just the aggregate data shown in Figure 5.
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tests). For rounds 6 to 10 we cannot reject the null of no trend in any of the
treatments (p = 0.484 in Fixed 1, p = 0.134 in Fixed 2, p = 0.388 in Random).
This seems to reflect what we observed for general convergence as measured by
NCV, which also seems to happen mainly in the first 5 rounds.

Notice that the mean (and median) βP in round 1 seems relatively high, which
may lead to the concern that the high levels achieved in subsequent rounds are
due to this. Recall that in this round subjects have not yet observed any of their
neighbors guesses. The high βP can therefore only be attributed to the random
draw of private signals used in the experiment. Following standard experimen-
tal procedures, the draw was kept random, as explained in the instructions, and
we did not make any selection of specific signal sets. More to the point, there is
no significant correlation between a group’s βP(0) and its average βP for the last
6 rounds. This means that the increasing trend we observe is not a result of the
(on average) high βP induced by the initial draw of signals.

4.3 Relative Positions

To compare subjects relative positions we rely on the opinion comparison matrices,
C1,3

i, j . This method allows us to focus on the pairwise comparisons of subjects and
is therefore less sensitive to the perturbations discussed earlier than methods
based on rank correlation. It does require to make a choice of a reference pair
(m,n) and as noted in the previous section we choose m = 1 and n = 3, as this
choice seems the most sensible and robust to perturbations given our design.
Still, in theory any choice should give the same results in the absence of noise,
and indeed we do find qualitatively similar results when trying different pairs.

By definition, any matrix Cm,n
i, j satisfies the condition Ci, j + C j,i = 1 for all

i , j. The elements of the diagonal are 0 and the elements (m,n) and (n,m) are
1 and 0 respectively, both again by definition. It therefore suffices to look at
the remaining elements below the diagonal to have a complete picture of the
relative positions in the group. For the groups in our experiments these are
the following 9 elements: (2,1), (3,2), (4,1), (4,2), (4,3), (5,1), (5,2), (5,3), (5,4).
Figure 6 shows the average value for each of those elements across rounds for
all observations in each treatment.
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If Property 2 holds, then these values should converge to either 0 or 1. Which
elements go to 0 and which go to 1 will depend on the specific listening matrix.
This means that, even without any assumptions on the shape of the listening
matrix, we would expect in the fixed network treatments the graph for each
element to converge to one or the other extreme, and no such convergence for
Random. Furthermore, we would expect to see a different convergence pattern
–different elements converging to different extremes– in Fixed 1 and Fixed 2. The
graphs on the left in figure 6 pretty much conform to these expectations.

In particular we see that all elements in Fixed 1 converge to average values
below 0.5. In Fixed 2 the same is true for all elements except (5,3) and (5,4). Recall
from Hypothesis 2 (c) that assuming equal weights in the listening matrix, it is
precisely in these two elements where we should observe a treatment effect
across the two fixed network treatments. This is depicted on the right side
of figure 6. Alas, the exact prediction would be for these two elements to
converge to 1, which we do not observe here. Still, their average values do seem
to remain above 0.5. Notice that the difference between the treatments is the
simple addition of one link from node 1 to node 5, allowing the latter to observe
the former’s guess. If the weight put by node 5 to node 1’s guess is very low,
then relative positions should not be different between treatments. Instances
like that could explain why these elements’ average value is far from 1.

In Random we do not observe any tendency for elements to converge to
extreme values. In fact, on average we find that elements take values very close
to the prediction obtained by assuming equal weights in the listening matrix.

Figure 7 shows heat-maps representing average opinion comparison matrices for
each treatment in specific rounds. These allow for an easy visual comparison
of subjects’ “average” relative positions in each treatment across rounds. We
aggregate data from rounds 6 to 10 to “average out” perturbations. While the
differences between Fixed 1 and Fixed 2 are less clear in this figure, it does show
the difference between relative position patterns in the fixed network treatments
and in Random. It also shows how close to the theoretical prediction (under the
assumption of equal weights) the relative positions in Random are.

Result 2. We find support for Hypothesis 2 (a) and (b) and partial support for Hypoth-
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Figure 6: The evolution of relative positions in each treatment. Each line corresponds to an
element below the diagonal of the opinion comparison matrix, specified by the pairs
in parenthesis on the right of each graph. Values indicate the average value for that
element across all groups in each treatment in a given round. The graphs on the left
show the values obtained in the experiment. The graphs on the right show how these
values would evolve if subjects put equal weights to all of their neighbors and their
own previous guesses, and without any noise.29



Figure 7: Heat-maps representing average opinion comparison matrices. Each cell in a
heat-map represents the average value for the corresponding element of the opinions
comparison matrices pertaining to the specific treatment for the given rounds. Cell
shadings correspond to values, with darker cells corresponding to values closer to 0.
Cells (1,3), (3,1) and the main diagonal are crossed out as their values do not depend
on the data. The upper three heat-maps represent the data from round 1. The middle
three represent average data from rounds 6 to 10. The lowest three represent theo-
retical benchmarks obtained by assuming that each subject assigns equal weight to all
neighbors in the listening matrix (see Hypothesis 2 (c) for the corresponding matrices).
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esis 2 (c).

Support: As discussed, Figures 6 and 7 provide graphical evidence of the dif-
ferences in relative position patterns predicted in Hypotheses 2 (a) and (b). For
the differences between the pattern in Fixed 1 and Fixed 2 we also perform the
Barnard’s exact test for the comparison of the average values between elements
in C1,3

Fixed 1 and C1,3
Fixed 2, averaged across rounds 6 to 10. We find significant dif-

ferences between elements (2,1) (p = 0.023), (4,3) (p = 0.011), (5,3) (p = 0.037)
and (5,4) (p < 0.001). Concerning Hypothesis 2 (c) one can see from both figures
that Random comes very close to the theoretical prediction obtained from assum-
ing equal weights in the listening matrix. A Barnard’s exact test between the
theoretical prediction and the average values of elements in C1,3

Random averaged
across rounds 6 to 10 shows that the only significant difference is in element
(2,1) (p = 0.005): the value in the data is 0.30 when theory predicts 0.18. In both
Fixed 1 and Fixed 2 the data does not coincide with the theoretical prediction.
Still, qualitatively the patterns are similar: in Fixed 1 where the theory predicts
all elements to be zero, these are all below 0.5. In Fixed 2 all values predicted to
be 0 are below 0.5 and the two elements predicted to be 1 are on average close
to 0.5 and significantly higher than the corresponding elements in Fixed 1.

4.4 Direction of Disagreement

We measure the direction of disagreement by the angle of rotation of the first
principal component of guesses with respect to the horizontal axis (tank 1),
measured in radians. In all treatments we used three sets of private signals,
each one with a different draws for each phase. If Hypothesis 3 is true, then
the difference in rotation between two groups starting off with the same set of
private signals in the same fixed network should be zero. Furthermore, the
difference in rotation between two groups in the same network starting with
different private signals should be positive. Finally, the difference in rotation
between two groups in different fixed networks, starting with the same set of
private signals should also be positive.

Figure 8 shows the difference in rotation per round between pairs of groups
with the same initial signal set (light grey boxplots) versus pairs of groups with
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Figure 8: Rotation differences between groups with the same vs different private signals. Light
grey boxplots show the distribution of pairwise differences in rotation for pairs with
the same initial signal sets. Dark boxplots show the distribution of pairwise differences
in rotation for pairs with different initial signal sets. Boxes represent the inter-quartile
range (area between the 25th and 75th percentile) with horizontal lines representing
medians. Whiskers extend 1.5 times the inter-quartile in each direction.

different initial signal sets (dark boxplots). The first and second panel depict
these differences for Fixed 1 and Fixed 2 respectively. The third panel shows
differences for pairs of groups where each group is in a different treatment. The
main conclusion from this exercise is that differences in rotation are similar for
any pair of groups compared, irrespectively of whether they start off with the
same set of signals or not. While this is concordant with the theory regarding
cross treatment comparisons, this should not be the case, if Property 3 holds, for
within treatment comparisons. While for Fixed 2 differences of rotation for pairs
of groups with the same initial signals are on average lower than for pairs with
different initial signals, these differences are not significant.24

Result 3. We do not find support for Hypothesis 3.

Support: See Figure 8 for graphical support and the discussion above.
Property 3 appears as the less robust to the perturbations in guesses we

observe in the lab. To understand why this may be true it can be useful to
look back at the example in Figure 3. The group there seems to converge to an
axis of disagreement with a rotation of approximately 1.46 rads by round 5. A

24According to a non-parametric rank-sum test for differences (Mann-Whitney-Wilcoxon).
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perturbation in the guess of subject 5 for tank 1 disturbs the process. By round
8 the group’s guesses are aligned again, with the same relative positions, as
predicted by properties 1 and 2. But the rotation of the axis of disagreement has
now changed. As long as such perturbations are common and not correlated to
initial signals it is not possible to use any information on the initial conditions
to predict the group’s direction of disagreement.

5 Discussion and Conclusions

It may be worth discussing a bit further one of our model’s implicit assumptions,
namely individuals using the same listening matrix to update opinions across
all issues. This implies that in a given round they listen to the same set of
individuals for all issues and assign the same weight to a given individual’s
opinion for all issues. In our experiment we restrict subjects to listen to the same
set of others in each round, but they are of course free to update their opinion
on each issue in any way they want. We do not find significant differences on
how they do this in between the two issues, but this is perhaps not so surprising
in the stylized guessing task they face. It is reasonable to think that in “real life”
individuals may place different weights on a friend’s opinions about political
issues and sports. In fact, one may only discuss specific issues in specific social
circles. It remains hence an open question how different the listening matrices
for each dimension can be to still observe the emergence of unidimensional
worlds. For now we can expect unidimensional worlds made up from issues
that are discussed in the same social network.

Our results could be of interest to the ongoing discussion concerning privacy
in online networks. Where one stands in a network determines her stance across
an array of potentially sensitive issues, and this is something to be taken into
account when designing regulation to protect privacy. However, we show that
correlations across issues may exist even in the absence of specific network
structures. Simply knowing one’s opinion on a subset of even trivial issues can
reveal information about their views on other more delicate matters. This poses
further challenges for privacy regulation, although one might say it simply
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strengthens the view of those claiming that such attempts to protect privacy
online are futile.

Finally, our results lead us to reflect upon some of the conventional wis-
dom about interventions aiming at influencing opinions in a population using
knowledge of the underlying structure of social interactions, such as marketing
and public awareness campaigns. A typical intervention of this sort would seed
information to individuals holding key positions in the network, in a way that
achieves the maximum effect while targeting a small number of influencers. In
our model, the desired effect would play-out through direction determinacy.
But our experiment shows that precisely this property is empirically not ro-
bust. This suggests that in some cases interventions may have a deeper effect
when aiming to change the shape of the social network, rather than some of
its members’ opinions in a particular point in time. Nevertheless, considering
that data regarding the exact network of social interactions are often hard to ob-
tain, the general feature of correlated opinions across different issues provides a
strong additional tool to the campaigner. Essentially, the campaigner could infer
previously unobserved individual preferences by simply managing to identify
patterns of correlation across issues.
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6 Appendix

6.1 Proofs

Proof of Theorem 2. First, notice that for a matrix of opinions s(t) the following
equivalence relation

lim
t→∞

βP(t) = 1⇔ lim
t→∞

ρ(si(t), sj(t))2 = 1 for all i, j ∈ {1, . . . ,K}with i , j

Hence, the Theorem holds if the following proposition is true:

Proposition 1. Let ρ(x,y) be the correlation coefficient of two vectors x and y. Consider
a sequence of generic listening matrices , {T(t)}∞t=1, with αt

2 ∈ R for all t, and two vectors
X(t) and Y(t) that are updated according to (1), for some initial vectors X(0) and Y(0)
with positive variance. Then ρ (X(t),Y(t))2

→ 1 as t→∞.

Before stating the proof, we introduce some simplifying notation. Recall
that bold letters denote matrices and normal letters denote scalars. The time
parameter in an opinion vector is denoted as a superscript, i.e. Xt := X(t) and
Yt := Y(t), the scalar Xt

i will denote the ith element of the vector Xt and Xt will
denote the average opinion on issue X in period t. The listening matrices in
period t are denoted by Tt with eigenvalues αt

1, . . . , α
t
N, with typical element αt

n
and ranked in decreasing order according to their modulus, ||αt

n||, as they may be
complex numbers. The correlation coefficient in period t will be denoted as ρt,
i.e. ρt := ρ(Xt,Yt). Any other necessary quantity will be defined in the relevant
part.

Recall that all elements of the sequence {Tt}
∞

t=1 are irreducible, aperiodic, row–
stochastic listening matrices25 and the opinion formation process is described

by the dynamics Xt =
t∏
τ=1

Tτ · X0 and Yt =
t∏
τ=1

Tτ · Y0, for some initial vectors X0,

Y0. We also repeat the three assumptions regarding the listening matrices: 1)
For each Tt the second largest eigenvalue αt

2 is real, 2) Tt is diagonalizable and
3) ||αt

2|| > ||α
t
n|| for all n > 2.

In the first part, we construct ρ2
t as a function of the initial opinions and the

25Strong connectivity of the networks together with strictly positive weights imply irre-
ducibility of Tt and positive diagonal implies aperiodicity. The matrices are also row–stochastic
by definition, given that their rows sum to 1.
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eigenvalues and eigenvectors of the listening matrices.

ρt =

N∑
i=1

(Xt
i − Xt)(Yt

i − Yt)√
N∑

i=1
(Xt

i − Xt)2

√
N∑

i=1
(Yt

i − Yt)2

⇒

ρ2
t =

N∑
i=1

N∑
j=1

(Xt
i − Xt)(Yt

i − Yt)(Xt
j − Xt)(Yt

j − Yt)

N∑
i=1

N∑
j=1

(Xt
i − Xt)(Xt

i − Xt)(Yt
j − Yt)(Yt

j − Yt)
(4)

At this point, we need to construct the factors of the form (Xt
i−Xt). By assump-

tion 2 each listening matrix Tt can be diagonalized in the form Tt = Vc,tAtVr,t,
where At is a diagonal matrix consisting of the N eigenvalues of Tt and Vc,t and
Vr,t are the N × N matrices of column and row eigenvectors respectively. The
expression can be restated as follows:

Tt = Vc,tAtVr,t =

N∑
n=1

αt
nVc,t

n Vr,t
n = 1wt +

N∑
n=2

αt
nVc,t

n Vr,t
n

where αt
n is the nth largest eigenvalue of Tt and Vc,t

n , Vr,t
n are the column and row

eigenvectors that correspond to this eigenvalue. The last equality holds because
for all irreducible, aperiodic, row–stochastic Tt it holds that α1,t = 1, Vc,t

1 = 1

(column vector of ones) and Vr,t
1 = wt (see for instance Karlin and Taylor, 1981).

Therefore,
t∏
τ=1

Tτ =

t∏
τ=1

1wτ +

N∑
n=2

ατnVc,τ
n Vr,τ

n

 (5)

This expression can also be simplified further through the following two lemmas:

Lemma 1. Let Vr
n be the row eigenvector corresponding to the nth largest eigenvalue,

αn, of a listening matrix B. Then, either αn = 1 (i.e. n = 1) or
∑

i vr
i,n = 0, where vr

i,n is
the ith element of the eigenvector.

Proof. The row eigenvector Vr
n and its associated eigenvalueαn satisfy the matrix

equation Vr
nB = αnVr

n. Let bi, j be a typical element of B and rewrite the equation
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as follows:

vr
1,nb1,1 + vr

2,nb2,1 + · · · + vr
n,nbn,1 − αnvr

1,n = 0

vr
1,nb1,2 + vr

2,nb2,2 + · · · + vr
n,nbn,2 − αnvr

2,n = 0
...

vr
1,nb1,n + vr

2,nb2,n + · · · + vr
n,nbn,n − αnvr

n,n = 0

Summing all rows we obtain:

vr
1,n

∑
j

b1, j + vr
2,n

∑
j

b2, j + · · · + vr
n,n

∑
j

bn, j − αn

∑
i

vr
i,n = 0

and row stochasticity of B implies that
∑

j bi, j = 1 for all i, hence∑
i

vr
i,n − αn

∑
i

vr
i,n = 0⇒ αn = 1 or

∑
i

vr
i,n = 0

Irreducibility and aperiodicity of B imply that αn = 1 if and only if n = 1. �

Lemma 2. Vc
nVr

n1 = 0 for all n ≥ 2, where Vc
n and Vr

n are the column and row
eigenvectors respectively associated to the nth largest eigenvalue and 1, 0 are column
vectors consisting of ones and zeros respectively.

Proof. The (i, j)-th element of Vc
nVr

n is equal to vc
n,iv

r
j,n. Hence, the ith element

of the vector Vc
nVr

n1 is equal to vc
n,i

(∑
j vr

j,n

)
= 0, where the last equality follows

from the Lemma 1. �

Lemmas 1 and 2 imply that any product that contains a factor of the form
N∑

n=2
ατnVc,τ

n Vr,τ
n 1wτ−1 for some τ will be equal to zero. Therefore:

t∏
τ=1

Tτ = 1wt

 t−1∏
τ′=1

Tτ′

 +

t∏
τ=1

 N∑
n=2

ατnVc,τ
n Vr,τ

n

 (6)

We are almost ready to construct the quantity (Xt
i − Xt). Denote by ei a

row vector with all elements equal to 0 and ith element equal to 1. Moreover,
ŵ = (1/N)1T is a row vector that will give us the average in each period.26 The
following lemma will help us simplify the final expression.

26DeMarzo et al. (2003) consider a general vector with non–negative elements that sum to one
when calculating relative positions, but they would need this more exact definition to obtain the
expression of ρ2

t . They would also need to consider as normalizing factor the standard deviation
in each issue, instead of the issue–independent normalization that is enough for characterizing
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Lemma 3. Let 1 be a N × 1 column vector of ones, w be a 1 × N row vector. then
ei1w = ŵ1w = w

Proof. Let w = (w1,w2 . . . ,wN), then:

ei1w = (0, . . . , 0, 1, 0, . . . , 0)


w1 w2 . . . wn

w1 w2 . . . wn
...

...
. . .

...
w1 w2 . . . wn

 = (w1,w2 . . . ,wN) = w

ŵ1w =
1
N

(1, . . . , 1)


w1 w2 . . . wn

w1 w2 . . . wn
...

...
. . .

...
w1 w2 . . . wn

 =
1
N

(Nw1,Nw2 . . . ,NwN) = w

�

Let us now construct (Xt
i − Xt)

Xt
i = eiXt = ei

t∏
τ=1

TτX0 = ei

1wt

 t−1∏
τ′=1

Tτ′

 X0

 + ei

 t∏
τ=1

 N∑
n=2

ατnVc,τ
n Vr,τ

n


 X0 (7)

Xt = ŵXt = ŵ
t∏
τ=1

TτX0 = ŵ

1wt

 t−1∏
τ′=1

Tτ′

 X0

 + ŵ

 t∏
τ=1

 N∑
n=2

ατnVc,τ
n Vr,τ

n


 X0 (8)

Lemma 3 shows that the first two factors are equal, therefore:

Xt
i − Xt = ei

 t∏
τ=1

 N∑
n=2

ατnVc,τ
n Vr,τ

n


 X0
− ŵ

 t∏
τ=1

 N∑
n=2

ατnVc,τ
n Vr,τ

n


 X0 (9)

which can be further simplified as follows:

Xt
i − Xt =

 N∑
n=2

αt
n

(
Vc,t

i,n − ŵVc,t
n

)
Vr,t

n

 t−1∏
τ=1

 N∑
m=2

ατmVc,τ
m Vr,τ

m

 X0 (10)

the relative positions. Having mentioned their proof, it is important to notice that in our case
stabilization of relative positions is not to be expected, because even if unidimensionality arises,
the agents’ positions may change across periods based on the realized listening matrices.
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where Vc,t
i,n denotes the ith element of the column eigenvector corresponding to

the nth largest eigenvalue of Tt. Notice that,
(
Vc,t

i,n − ŵVc,t
n

)
is the only factor that

depends on i, it is a scalar and does not depend on the issue. Moreover, for

each n, Vr,t
n

t−1∏
τ=1

(
N∑

m=2
ατmVc,τ

m Vr,τ
m

)
X0 is also a scalar and does not depend on i. This

expression can also be written as a sum of products, as follows:

Xt
i − Xt =

N∑
n1,...,nt=2

αt
nt

(
Vc,t

i,nt
− ŵVc,t

nt

)
Vr,t

nt

 t−1∏
τ=1

ατnτV
c,τ
nτ Vr,τ

nτ

 X0

 (11)

A similar sum of products can be defined for Xt
j −Xt, Yt

i −Yt and Yt
j −Yt. Given

that each of these products appears both in the numerator and the denominator

of ρ2
t , we can divide each of them with

t∏
τ=1
ατ2 and ρ2

t will remain unchanged.

This will be helpful when calculating the limit of ρ2
t as t grows.

For each t define the sequence {(l1
1, l

1
2, l

1
3, l

1
4), (l2

1, l
2
2, l

2
3, l

2
4), . . . , (lt

1, l
t
2, l

t
3, l

t
4)}, where

its element lτk ∈ {2, . . . ,N} determines nτ for each of the four parts of each product
(corresponding to Xt

i − Xt, Yt
i − Yt, Xt

j − Xt and Yt
j − Yt for the numerator and

analogously for the denominator). The set that contains all these sequences
is denoted by St with typical element st. According to this notation, we can

denote the value of each of the above products (after being divided by
t∏
τ=1
ατ2)

in the numerator and denominator as fi, j(st) and gi, j(st) respectively. Notice that
in general fi, j(st) , gi, j(st), as the order of variables is different. Hence, we can
rewrite ρ2

t as follows:

ρ2
t =

N∑
i=1

N∑
j=1

[ ∑
st∈St

fi, j(st)
]

N∑
i=1

N∑
j=1

[ ∑
st∈St

gi, j(st)
] (12)

Moreover, define asS the set of all infinite sequences {(l1
1, l

1
2, l

1
3, l

1
4), (l2

1, l
2
2, l

2
3, l

2
4), . . . },

with typical element s and observe that

ρ2
t →

N∑
i=1

N∑
j=1

[∑
s∈S

fi, j(s)
]

N∑
i=1

N∑
j=1

[∑
s∈S

gi, j(s)
] as t→∞ (13)
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The set S can be partitioned in two subsets S1 and S2 = S \S1, where the set S1

is defined as follows:

S1 :=
{
s ∈ S : exists t̂ such that for all t > t̂ it holds that (lt

1, l
t
2, l

t
3, l

t
4) = (2, 2, 2, 2)

}
In words, the set S1 contains all the sequences in which all but finitely many

elements are equal to (2, 2, 2, 2). The set S2 is just the complement of S1. Hence,
the previous expression can be rewritten as follows:

ρ2
t →

N∑
i=1

N∑
j=1

[ ∑
s1∈S1

fi, j(s1) +
∑

s2∈S2

fi, j(s2)
]

N∑
i=1

N∑
j=1

[ ∑
s1∈S1

gi, j(s1) +
∑

s2∈S2

gi, j(s2)
] as t→∞ (14)

Observe that, for each i, j, the quantity fi, j(s) has the form:

fi, j(s) =

 ∞∏
τ=1

4∏
k=1

ατlτk
ατ2

 Ci, j

where Ci, j is a finite number, generically different than zero, that is determined
by the rest of the parameters. The expression for gi, j(s) is analogous.

Now consider any s2 ∈ S2 and notice that by its definition as complement of
S1 it means that for all t exists τ > t such that (lτ1, l

τ
2, l

τ
3, l

τ
4) , (2, 2, 2, 2). Therefore,

by assumption (3), for all t exists τ > t such that
∣∣∣∣∣∣∣∣∣∣ατlτkατ2

∣∣∣∣∣∣∣∣∣∣ < 1. Hence, there is

ε > 0 such that
∣∣∣∣∣∣∣∣∣∣ατlτkατ2

∣∣∣∣∣∣∣∣∣∣ ≤ (1 − ε) for infinitely many elements of s2, whereas for the

remaining elements it holds that
∣∣∣∣∣∣∣∣∣∣ατlτkατ2

∣∣∣∣∣∣∣∣∣∣ = 1. This observation combined with the

finiteness of Ci, j means that fi, j(s2) = 0 and analogously gi, j(s2) = 0 as well.
Finally, consider s1 ∈ S1 and the sequence sC

1 that is defined in relation to s1

as follows: for all t, if the t-th quadruple element of s1 is (lt
1, l

t
2, l

t
3, l

t
4) then the t-th

quadruple element of sC
1 is (lt

1, l
t
3, l

t
2, l

t
4) –Observe the interchanged positions of lt

2
and lt

3–. Notice that, sC
1 ∈ S1 and in fact if t1 is the period such that for all t > t1

it holds that (lt
1, l

t
2, l

t
3, l

t
4) = (2, 2, 2, 2), then the same t1 is such that for all t > t1

it holds that (lt
1, l

t
3, l

t
2, l

t
4) = (2, 2, 2, 2). Moreover, for all s1 ∈ S1 the sequence sC

1
exists and in some cases even coincides with s1. Therefore we have defined a
one–to–one relation from S1 to itself. It follows immediately from expressions
(4) and (11) that fi, j(s1) = gi, j(sC

1 ), for all i, j and for all s1 ∈ S1. In fact, this is true
not only in the limit, but also for all finite subsequences of s1 and sC

1 with t > t1.
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Therefore,
N∑

i=1

N∑
j=1

[ ∑
s1∈S1

fi, j(s1)
]

=
N∑

i=1

N∑
j=1

[ ∑
s1∈S1

gi, j(s1)
]
. These sums are generically

different than zero, given that S1 contains the element ŝ for which lt
k = 2 for all

k, t, hence satisfies
αt

ltk
αt

2
= 1 for all k, t. Hence, we can conclude that:

ρ2
t → 1 as t→∞

�
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6.2 Experimental Instructions

We present the instructions for the two fixed treatments F1 and F2. The relevant
changes for the random treatment appear in footnotes.

INSTRUCTIONS
Thank you for participating in this session. Please remain quiet! You will

be using the computer terminal for the entire experiment, and your decisions
will be made via your computer terminals. Please DO NOT talk or make any
other audible noises during the experiment. The use of mobile phones or other
devices is prohibited. You are free to use the calculator provided. If you have
any questions, raise your hand and your question will be answered so that
everyone can hear.

General Instructions:
The experiment will take place in three parts. The remaining instructions

refer to Part 1 of the experiment. Once part 1 is over you will be given instructions
for Parts 2 and 3.

The experiment will involve a series of guesses. Each of you may earn
different amounts. You also receive a 3 participation fee. Upon completion of
the experiment, you will be paid individually and privately in room B33 upon
presentation of the computer number you were assigned.

IMPORTANT:
The amount each participant earns, in today’s experiment, depends only

on his/her decisions and not on the decisions of other participants.

There is no specific time limit for making each guess. In order to finish the
experiment on time we ask you to enter your guess in a reasonable amount of
time. If a notification asking you to enter a guess appears on your screen please
do so as soon as possible.

Part 1

The Task: In a tank there are 100,000 balls. These balls are either RED or
BLUE. The number of balls of each colour is random and any combination is
equally likely. You are asked to guess the number of RED balls in the tank. This
number could be anywhere between 0 and 100,000.

Before making your guess, you observe a sample of 100 balls picked ran-
domly from the tank. That is, the computer will inform you how many of
the 100 balls in your sample were RED. You are then asked to enter a guess
concerning the total number of red balls (between 0 and 100,000).

You will repeat this task three times. In other words you will make three
guesses for three different tanks (filled with a different number of red and blue
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balls) and using a different sample each time. After each guess you will be given
the correct number of RED balls and the points earned calculated as follows:

Points: For each guess you earn a maximum of 100 points if your guess
is correct, while you earn fewer points for guessing wrong. The higher the
difference between your guess and the correct number, the less points you earn.
The exact number of points you earn in each round is given by the following
formula:

Points = 100 − Error Factor ×
(

Correct −Guess
1, 000

)2

If the result from the formula is negative, you earn zero points. You will
be shown on your screen the exact value of the Error Factor for each guess you
make.

Example
Suppose the number of red balls in the tank is 57,345. The following table

illustrates examples of different guesses and the resulting number of points you
would earn for different error factors.

Guess 69,345 52,345 52,345 59,545 55,145 55,545
Difference from correct 12,000 5,000 5,000 2,200 2,200 1,800
Error factor 1 1 10 10 25 25
Formula result -44 75 -150 51.6 -21 19
Points 0 75 0 51.6 0 19

Given this formula, you maximize the expected number of points you
earn in each round by making a guess that is as close as possible to your true
estimate of the correct number of Red balls in the tank.

Out of the three guesses you will make in part 1, one will be selected ran-
domly by the computer at the end of the experiment. The points you earned in
the randomly selected guess will be transformed into monetary earnings. The
exchange rate used is 1 for every 85 points. Notice that since all guesses can
be chosen with the same probability, you cannot know for which of the guesses
you will be paid. Therefore you should treat all guesses the same and make a
guess as if you are going to be paid for it.
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Part 2:

You will be assigned to a group that has 5 members. These groups are formed
randomly and anonymously. You will interact exclusively within each group
without knowing the identity of the other group members.

The Task: The task in this part has 5 rounds. Like in part 1, in a tank there are
100,000 balls. These balls are either RED or BLUE. The number of balls of each
colour is random and any combination is equally likely. Each group member
will be asked to guess the number of RED balls in the tank in each of the 5
rounds. This number could be anywhere between 0 and 100,000 and remains
the same for all 5 rounds.

The task proceeds as follows: Before making a first guess, each member
observes a different sample of 100 balls picked randomly from the tank.

Round 1: On your screen you will see the amount of RED balls in your
sample of 100.

You are asked to make a guess about the number of red balls in the tank, as
in Part 1.

Round 2: On your screen you will see the guess you made in round 1, as well
as the guess(es) made in round 1 by some of the other group members. You may
observe a subset of one, two, or three other members. Each group member
observes the guess(es) of a different subset of group members. Furthermore,
the fact that you observe a group member X does not necessarily mean that X
observes you.27

You are asked to make a new guess about the number of RED balls in the
tank.

Rounds 3-5: These rounds are the same as round 2. You see the guess(es)
made previously by the group members you observe, and are asked to make a
new guess.28

Payoffs: Again, you can earn a maximum of 100 points in each round if your
guess is correct, while you earn fewer points for guessing wrong. The higher
the difference between your guess and the correct number, the less points you
earn. The exact number of points you earn in each round is given by the same
formula as before:

27Round 2: On your screen you will see the guess you made in round 1, as well as the
guess(es) made in round 1 by some other randomly chosen group members. You may observe
one, two, or three other members. The fact that you observe a group member X does not
necessarily mean that X observes you.

28Rounds 3-5: These rounds are the same as round 2. Some group members are chosen
randomly, you see their guess(es) from the previous round, and are asked to make a new guess.
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Points = 100 − Error FactorRound ×

(
Correct −Guess

1, 000

)2

Now the Error Factor is different in each round:

Round 1 2 3 4 5
Error Factor 1 5 10 20 25

If in a round the result from the formula is negative, you earn zero points in
that round. After the 5 rounds are over, you will be shown how many points
you earned in each round. At the end of the experiment the computer will
randomly choose 1 out of the 5 rounds. The points you earned in this randomly
chosen round will be transformed in to monetary earnings. The exchange rate
used is 1 for every 85 points. Notice that since all 5 rounds can be chosen with
the same probability, you cannot know for which of the rounds you will be paid.
Therefore you should treat all rounds the same and make a guess as if you are
going to be paid for it.

Remember:

1. You will play 5 rounds. Your group and the members whose guesses
you observe remain fixed during the whole time.29

2. There is a single tank and everybody in the group is guessing the number
of RED balls in this tank. Each member observes a different sample of
100 balls and a different sample of group members.

3. Given the formula, you maximize the expected number of points you
earn in each round by making a guess that is as close as possible to your
true estimate of the correct number of Red balls in the tank.

4. The points you earn depend only on your guess and not on the guesses
of other members.

29You will play 5 rounds. Your group and the number of members whose guesses you
observe remain fixed during the whole time. The group members you observe are chosen
randomly in each round.
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Part 3:

The composition of each group remains unchanged throughout all the
experiment (same as in part 2). Remember that each group member observes
the guess(es) of a different subset of group members, some will observe one,
some two, and some three other group members.30

In this part there are 3 Phases of 10 rounds each.

The Task: Now there are two tanks filled with 100,000 balls each. Tank 1
contains RED and BLUE balls, while Tank 2 contains GREEN and PURPLE balls.
The number of balls of each colour in each tank is random and any combination
is equally likely. You are asked to guess the correct number of RED balls in Tank
1 and of GREEN balls in Tank 2. The number of RED balls in Tank 1 is not
related to the number of GREEN balls in Tank 2. These two numbers could be
anywhere between 0 and 100,000.

As in part 2, before making a first guess, each participant observes 2 samples
of 100 balls picked randomly: one sample for Tank 1, and one sample for Tank
2. Remember that each participant observes different random samples. Each
phase then proceeds as follows:

Round 1: On your screen you will see the amount of RED balls in your
sample from Tank 1 and the number of GREEN balls in your sample from Tank
2. You are asked to make a guess about the correct number of balls of the
corresponding colour in each tank.

Round 2: As in part 2, on your screen you will see your guesses for each
tank from round 1. You will also see the guesses made for each tank by the
group members you observe from your group. After seeing their guesses you
are asked to make new guesses about the number of RED balls in Tank 1 and
GREEN balls in Tank 2.31

Rounds 3-10: As before, these rounds are the same as round 2. You see the
guesses made in the previous rounds by the group members you observe, and
make new guesses.32

30The composition of each group remains unchanged throughout all the experiment (same
as in part 2). Remember that each group member observes the guess(es) of one, two, or three
other group members in each round.

31Round 2: As in part 2, on your screen you will see your guesses for each tank from round
1. You will also see the guesses made for each tank in the previous round by some other group
members that are chosen randomly. After seeing their guesses you are asked to make new
guesses about the number of RED balls in Tank 1 and GREEN balls in Tank 2.

32Rounds 3-10: As before, these rounds are the same as round 2. Some group members are
chosen randomly, you see their guesses from the previous round, and are asked to make new
guesses.
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History: Starting from the 2nd phase in this part, you will have the opportu-
nity to see the history of all guesses you and the group members you observe
have made in previous phases. To access the history you just have to press the
button on the top of your screen.

Payoffs: As in Parts 1 and 2, your payoff in each round is determined using
the same formula. The guess you make for each tank enters the formula along
with the correct number of balls of the corresponding colour. The Error Factor
in each round is shown in the table below.

Round 1 2 3 4 5 6 7 8 9 10
Error Factor 1 5 10 15 15 15 20 20 20 25

The points you earn from each tank (maximum 100) are added together to
give the total number of points for the round. At the end of each phase you will
be shown how many points you earned in each round and from each tank. At
the end of the experiment the computer will randomly choose 1 out of the 10
rounds for each of the three phases. The points you earned in this randomly
chosen round will be transformed into monetary earnings. The exchange rate
used is 1 for every 85 points. Notice that since all 10 rounds of each phase can
be chosen with the same probability, you cannot know for which of the rounds
you will be paid. Therefore you should treat all rounds the same and make a
guess as if you are going to be paid for it. Your monetary earning from each of
these 3 rounds (one for each phase) will be added to your earnings from parts
1 and 2 and the show-up fee of 3. A screen will inform you about your total
monetary earnings at the end of the experiment.

Remember:

1. You will play 3 phases of 10 rounds. The groups and the members whose
guesses you observe remain the same. What changes in each phase is the
amount of balls in each tank and the samples observed by each member
before making the first guess.33

2. In each phase there is a different amount of balls in each tank. The
samples observed by each member before making the first guess are
also different for each phase.

3. You maximize the expected number of points you earn in each round by
making guesses that are as close as possible to your true estimates of the
correct number of RED balls in Tank 1 and GREEN balls in Tank 2.

4. The points you earn depend only on your guess and not on the guesses
of other members.

33You will play 3 phases of 10 rounds. The groups and their members remain the same. In
each round some group members are chosen randomly and you observe their guesses in the
previous rounds.
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